
2023/07/12 11:48 1/7 ibec_StartTraceSession (PDF)

IBExpert - http://ibexpert.com/docu/

ibec_StartTraceSession (PDF)

Fikret Hasovic, August 2022

PDF Download

As we have previously explained, IBEBlock is a set of DDL, DML and other statements that are
executed on the server and on the client side, and which include some specific constructions
applicable only in IBExpert or IBEScript (excluding the free versions of these products), independent
of the database server version.

IBEBlock is an extremely complex and capable piece of software, which can help you to increase your
productivity and save both time and money spent on your projects.

Now, imagine you have a database under heavy load, and you would like to identify which attachment
is responsible for that. You can execute a select on the MON$ tables, which will show most active
connections and if one of the connections has an unusually high load compared to all others, this
connection should be traced into a log.

Trace and audit

If you are already a Firebird user, you have probably heard about Firebird’s Trace and Audit services,
initially developed from the TraceAPI contributed by Nickolay Samofatov, which he had developed for
Red Soft Database. This feature enables you to look inside the Firebird engine and log various events
for real-time analysis.

Two different kinds of traces can be performed: user traces and a system audit.

There are three general cases for use:

Constant audit of engine activity
Interactive trace of specified activity in specified database(s).
Engine activity logging for a specified period of time (be it hours or a whole day) for later
analysis.

For more detailed explanation, please see Trace and audit

Nevertheless, an audit/trace does not replace the monitoring tables, because with the monitoring
tables, the user can query a snapshot of the current state of a database, whereas an audit/trace can
be compared with a sequential stream of logged statements. For example, if you wish to know the
number of currently active transactions inside a database, simply query the MON$TRANSACTIONS
table. With the audit/trace facility, this probably can only be done with advanced data analysis tasks
on the log data stream (if at all).

The IBExpert release version 2022.06.10 introduces ibec_StartTraceSession (among other useful new
features and improvements).

ibec_StartTraceSession starts a trace session using the Firebird Services API and writes trace data into
a file. Additional filtering of trace items is possible via a callback block.

http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-09-ibexpert-services-menu:trace-and-audit

Last
update:
2023/06/19
16:38

01-documentation:01-06-white-papers:rest-example http://ibexpert.com/docu/doku.php?id=01-documentation:01-06-white-papers:rest-example

http://ibexpert.com/docu/ Printed on 2023/07/12 11:48

Syntax

 function ibec_StartTraceSession(ConnectParams : string; TraceConfig :
string; OutputFile : string; FilterBlock : variant; ProgressBlock : variant)
: variant;

ConnectParams - a list of connection params and some additional options delimited with a
semicolon (;):

Server - server name including port number if necessary.
User - user name.
Password – password.
ClientLib - path to a client library dll.
MaxFileSize - maximum size of the result file, in megabytes. If not specified the result file size
will be limited to 100 megabytes.
StopAfter - determines the duration of the trace session in minutes. The default value is 60
minutes.
IncludeStatistics - some statistical data (total and max per second number of processed lines
and events) will be written at the beginning of the trace data.
AppendToExisting | AppendMode - if specified, trace data will be added to the existing file
(if it exists).

TraceConfig - Firebird trace configuration.

OutputFile – the name of the result file which will contain the trace data.

FilterBlock - a callback block which performs additional filtering of trace items if necessary. This
block is called for every trace item and accepts a trace item text as an input parameter
(EventSource). The output parameter 'NeedSkip determines whether the trace item should be
skipped, i.e. not included into the result file.

If no additional filtering is needed, pass NULL or an empty string as the FilterBlock value.

ProgressBlock - a callback block that is intended to display the progress of tracing. It receives an
array of the following statistical data:

Data[0] (or Data['LinesProcessed']) - number of processed lines.
Data[1] (or Data['EventsProcessed']) - number of processed trace items/events.
Data[2] (or Data['EventsMatched']) - number of trace items written to the result file.
Data[3] (or Data['OutputSize']) - current size of the result file in bytes.

The output parameter Threshold determines a delay in milliseconds before the next call of
ProgressBlock.

ibec_StartTraceSession returns NULL if a trace session is started successfully, otherwise it returns an
error message as a result.

One example of usage can be the following:

execute ibeblock

2023/07/12 11:48 3/7 ibec_StartTraceSession (PDF)

IBExpert - http://ibexpert.com/docu/

as

-- Filter block
declare ibeblock filter_block (EventSource variant)
returns (
 NeedSkip boolean = FALSE)
as
begin
 -- Using regular expression
 NeedSkip = ibec_preg_Match('(?i)0\x20ms', :EventSource);

 -- Using ibec_Pos
 NeedSkip = ibec_Pos(' 0 ms', :EventSource) > 0;
end;

-- Callback block
declare ibeblock progress_block (data variant)
returns (
 threshold integer = 2000)
as
begin
 for i = 0 to ibec_High(data) do
 data[i] = ibec_Cast(data[i], __typeString);

 s = ibec_Format('| %15.15s | %16.16s | %14.14s | %16.16s |', data[0],
data['EventsProcessed'], data['EventsMatched'], data['OutputSize']);
 ibec_ProgressEx(s, __poNoCRLF + __poReplaceLast);
end;

begin
 sConfig = ibec_LoadFromFile('D:\temp\trace.conf');
 sOutFile = 'D:\Temp\tracedata.txt';
 sConnectParams = 'Server="myserver/3044"; User=SYSDBA; Password=masterkey;
ClientLib="D:\FB4_CLIENT\fbclient.dll"';
 sOptions = 'MaxFileSize=10; StopAfter=60; IncludeStatistics';

 ibec_Progress('');
 ibec_Progress('+-----------------+------------------+----------------+----
--------------+');
 ibec_Progress('| Lines processed | Events processed | Events matched |
Output file size |');
 ibec_Progress('+-----------------+------------------+----------------+----
--------------+');

 Res = ibec_StartTraceSession(:sConnectParams || ';' || :sOptions,
 :sConfig,
 :sOutFile,
 filter_block,
 progress_block);

 if (Res is not null) then -- Error caused

Last
update:
2023/06/19
16:38

01-documentation:01-06-white-papers:rest-example http://ibexpert.com/docu/doku.php?id=01-documentation:01-06-white-papers:rest-example

http://ibexpert.com/docu/ Printed on 2023/07/12 11:48

 ibec_Progress('ERROR: ' || Res);
end;

Let’s now return to our original task, to identify which connection generates an unusually high
database load.

If you are an experienced user, you can try a select on any combination of MON$ tables to get
interesting attachment IDs as results, and you can later change your query.

My approach here will be to store the current state of page reads/write in a new table, for example
every minute and check which attachments performed the largest amount of reads/writes within the
last 10 minutes and is not already actively traced.

Also, if the total number of reads + writes is below 100,000 within last 10 minutes, it should be
ignored.

I have created a table in the database to hold the data collected every minute:

CREATE TABLE IBE$MON (
 ATTACHMENTS_ID BIGINT NOT NULL,
 STATEMENT_ID BIGINT NOT NULL,
 TRANSACT_ID BIGINT,
 OPERATIONS BIGINT,
 TS TIMESTAMP DEFAULT current_timestamp
);

The following indices will help with our query later:

CREATE INDEX IBE$MON_IDX1 ON IBE$MON (ATTACHMENTS_ID);
CREATE INDEX IBE$MON_IDX2 ON IBE$MON (TS);

Now I have created ibeCollectData.sql as follows:

execute ibeblock
 as
 begin
 FBSrc =
ibec_CreateConnection(__ctFirebird,'DBName="localhost:C:\db\mydb.fdb";
 ClientLib=c:\db\firebird3\fbclient.dll;
 user=SYSDBA; password=masterkey;
names=UTF8; sqldialect=3');
 ibec_UseConnection(FBSrc);

 insert into ibe$mon (
 attachments_id,
 statement_id,
 transact_id,
 operations)
 select st.mon$attachment_id,
 st.mon$statement_id,

2023/07/12 11:48 5/7 ibec_StartTraceSession (PDF)

IBExpert - http://ibexpert.com/docu/

 st.mon$transaction_id,
 cast(sum(io.mon$page_reads)+
 sum(io.mon$page_writes) as integer)
 from mon$statements st
 join mon$attachments a on a.mon$attachment_id = st.mon$attachment_id
 join mon$io_stats io on (st.mon$stat_id = io.mon$stat_id)
 group by 1, 2, 3
 having (sum(io.mon$page_reads) + sum(io.mon$page_writes)) > 0;

 COMMIT;

 ibec_CloseConnection(FBSrc);
 end

To execute the previous script, I have created ibeCollectData.cmd, which is basically a batch script:

ibescript.exe ibeCollectData.sql
timeout 60
ibeCollectData.cmd

This batch script will execute the IBEBlock script every minute (adjustable, see timeout value) and
repeat, so that you will have a snapshot of the MON$ tables every minute and stored in the table for
time-related purposes.

execute ibeblock
as
begin
 MyFunc = 'EXECUTE IBEBLOCK
 AS
 BEGIN
 sCRLF = ibec_CRLF();
 sConnectParams = ''Server="127.0.0.1/3050"; User=SYSDBA;
Password=masterkey; ClientLib="c:\db\firebird3\fbclient.dll"'';
 sOptions = ''MaxFileSize=10; StopAfter=10; IncludeStatistics;
AppendToExisting'';
 sConfig = ''database '' || sCRLF ||
 ''{'' || sCRLF ||
 ''enabled = true '' || sCRLF ||
 ''connection_id = '' || att_id || sCRLF ||
 ''log_statement_prepare = true '' || sCRLF ||
 ''log_statement_free = true '' || sCRLF ||
 ''log_statement_start = true '' || sCRLF ||
 ''log_statement_finish = true '' || sCRLF ||
 ''time_threshold = 0 '' || sCRLF ||
 ''}'';
 sOutFile = ''c:\Temp\tracedata_'' || att_id || ''.txt'';

 Res = ibec_StartTraceSession(:sConnectParams || '';'' ||
:sOptions,
 :sConfig,
 :sOutFile,

Last
update:
2023/06/19
16:38

01-documentation:01-06-white-papers:rest-example http://ibexpert.com/docu/doku.php?id=01-documentation:01-06-white-papers:rest-example

http://ibexpert.com/docu/ Printed on 2023/07/12 11:48

 null,
 null);

 if (Res is not null) then -- Error caused
 ibec_Progress(''ERROR: '' || Res);
 END';

 FBSrc = ibec_CreateConnection(__ctFirebird,'DBName="localhost:C:\db\
mydb.fdb";
 ClientLib=c:\db\firebird3\fbclient.dll;
 user=SYSDBA; password=masterkey; names=UTF8; sqldialect=3');
 ibec_UseConnection(FBSrc);

 for select IBE$MON.attachments_id, sum(IBE$MON.operations) io from
IBE$MON
 where (IBE$MON.ts > dateadd(-10 minute to current_timestamp))
 group by IBE$MON.attachments_id
 into :att_id, :IO do begin
 if (IO > 10000/*or any other threshold load value*/) then begin

 TFunc = replace(MyFunc, 'att_id', cast(att_id as varchar(20)));
 fn = cast(att_id as varchar(20)) || '.ibe';
 ibec_SaveToFile(fn, TFunc, __stfOverwrite);
 end
 end
 COMMIT;

 ibec_CloseConnection(FBSrc);
end

As with the previous script, I have created an ibeTraceLoad.cmd script:

ibescript.exe ibeTraceLoad.sql
for %%i in (*.ibe) do start "" "ibescript.exe" "%%~i"
timeout 10
del *.ibe
timeout 50
ibeTraceLoad.cmd

If you compare this IBEBlock script to the one at the beginning of this document, you will notice that I
have constructed trace options in code, instead of using the trace config file:

sConfig = ibec_LoadFromFile('D:\temp\trace.conf');

in comparison to:

sConfig = ''database '' || sCRLF ||
 ''{'' || sCRLF ||

2023/07/12 11:48 7/7 ibec_StartTraceSession (PDF)

IBExpert - http://ibexpert.com/docu/

 ''enabled = true '' || sCRLF ||
 ''connection_id = '' || att_id || sCRLF ||
 ''log_statement_prepare = true '' || sCRLF ||
 ''log_statement_free = true '' || sCRLF ||
 ''log_statement_start = true '' || sCRLF ||
 ''log_statement_finish = true '' || sCRLF ||
 ''time_threshold = 0 '' || sCRLF ||
 ''}'';

However, you can use your preferred method of specifying the trace config.

In a nutshell, our main script here, ibeTraceLoad.sql, will check the history of the MON$ tables from
our table for the last 10 minutes, and if the threshold value is exceeded, it will generate individual
scripts so that trace sessions can be started in parallel if there is more than one connection
generating an abnormal load on the database.

These individual scripts are, in this case, named after the attachment ID, with a file extension ibe.

Since trace sessions will be “suspended” until the end of the trace session, I couldn’t execute
ibec_StartTraceSession in a loop, so I used a loop to create separate IBEBlock scripts, and used the
command

for %%i in (*.ibe) do start "" "ibescript.exe" "%%~i"

to execute all generated scripts that are found. The batch script will wait 10 seconds after running the
scripts and then try to delete old .ibe files, so that out-of-date scripts are removed. Please note that
ibec_StartTraceSession is run for 10 minutes, but that value can be adjusted for your own needs.

I decided to check for high load connections once every minute, but if a trace session is in progress, it
will skip it. After an additional sleep period of 50 seconds, the script will repeat itself. If there is
already a trace session in progress, a new one cannot be started before the trace session (which is
specified in the call of the function) has expired for 10 minutes.

Also, I decided to use multiple files to output trace results, for each attachment generating abnormal
load there is separate trace log, but you can use single file if you prefer.

From:
http://ibexpert.com/docu/ - IBExpert

Permanent link:
http://ibexpert.com/docu/doku.php?id=01-documentation:01-06-white-papers:rest-example

Last update: 2023/06/19 16:38

http://ibexpert.com/docu/
http://ibexpert.com/docu/doku.php?id=01-documentation:01-06-white-papers:rest-example

	ibec_StartTraceSession (PDF)
	Trace and audit
	Syntax

