
2023/09/15 21:04 1/12 Autonomous transactions

IBExpert - http://ibexpert.com/docu/

Autonomous transactions

Adriano dos Santos Fernandes

Tracker reference CORE-1409.

This new implementation allows a piece of code to run in an autonomous transaction within a PSQL
module. It can be handy for a situation where you need to raise an exception but do not want the
database changes to be rolled back.

The new transaction is initiated with the same isolation level as the one from which it is launched. Any
exception raised in a block within the autonomous transaction will cause changes to be rolled back. If
the block runs through until its end, the transaction is committed.

Warning: Because the autonomous transaction is independent from the one from which is launched,
you need to use this feature with caution to avoid deadlocks.

Syntax pattern

IN AUTONOMOUS TRANSACTION
DO
 <simple statement | compound statement>

Example of use

create table log (
 logdate timestamp,
 msg varchar(60)
);

create exception e_conn 'Connection rejected';

set term !;

create trigger t_conn on connect
as
begin
 if (current_user = 'BAD_USER') then
 begin
 in autonomous transaction
 do
 begin
 insert into log (logdate, msg) values (current_timestamp, 'Connection
rejected');
 end

 exception e_conn;
 end
end!

https://github.com/FirebirdSQL/firebird/issues/1827
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:firebird2.1-language-reference:transaction-control-statements:set-transaction
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:exception
http://ibexpert.com/docu/doku.php?id=01-documentation:01-13-miscellaneous:glossary:compile-and-commit-rollback
http://ibexpert.com/docu/doku.php?id=01-documentation:01-13-miscellaneous:glossary:isolation-level

Last
update:
2023/08/13
19:45

01-documentation:01-13-miscellaneous:glossary:autonomous-transaction http://ibexpert.com/docu/doku.php?id=01-documentation:01-13-miscellaneous:glossary:autonomous-transaction

http://ibexpert.com/docu/ Printed on 2023/09/15 21:04

set term ;!

back to top of page

Borrow database column type for a PSQL variable

Adriano dos Santos Fernandes

Tracker reference CORE-1356.

This feature extends the implementation in v.2 whereby domains became available as data types for
declaring variables in PSQL. Now it is possible to borrow the data type of a column definition from a
table or view for this purpose.

Syntax pattern

data_type ::=
 <builtin_data_type>
 | <domain_name>
 | TYPE OF <domain_name>
 | TYPE OF COLUMN <table or view>.<column>

Note: TYPE OF COLUMN gets only the type of the column. Any constraints or default values defined for
the column are ignored.

Examples

CREATE TABLE PERSON (
 ID INTEGER,
 NAME VARCHAR(40)
);

CREATE PROCEDURE SP_INS_PERSON (
 ID TYPE OF COLUMN PERSON.ID,
 NAME TYPE OF COLUMN PERSON.NAME
)
 AS
DECLARE VARIABLE NEW_ID TYPE OF COLUMN PERSON.ID;
BEGIN
 INSERT INTO PERSON (ID, NAME)
 VALUES (:ID, :NAME)
 RETURNING ID INTO :NEW_ID;
END

Hidden trap!

In v.2.5 and beyond, it is possible to alter the data type of a column, even if the column is referenced
in a stored procedure or trigger, without an exception being thrown. Because compiled PSQL is stored
statically as a binary representation (“BLR”) in a BLOB, the original BLR survives even a backup and

https://github.com/FirebirdSQL/firebird/issues/1774
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:domain
http://ibexpert.com/docu/doku.php?id=01-documentation:01-13-miscellaneous:glossary:data-type
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:stored-procedure-and-trigger-language
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:table
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:view
http://ibexpert.com/docu/doku.php?id=01-documentation:01-13-miscellaneous:glossary:constraint

2023/09/15 21:04 3/12 Autonomous transactions

IBExpert - http://ibexpert.com/docu/

restore. Being static, the BLR is not updated by the data type change, either.

This means that, for variables declared using the TYPE OF syntax, as well as the affected columns
from the tables, together with any view columns derived from them, the compiled BLR is broken by
the change of data type. At best, the BLR will be flagged as “needing attention” but tests show that
the flag is not set under all conditions.

In short, the engine now no longer stops you from changing the type of a field that has any
dependencies in compiled PSQL. It will be a matter for your own change control to identify the
affected procedures and triggers and recompile them to accommodate the changes.

back to top of page

New extensions to EXECUTE STATEMENT

Unusually for our release notes, we begin this chapter with the full, newly extended syntax for the
EXECUTE STATEMENT statement in PSQL and move on afterwards to explain the various new features
and their usage.

[FOR] EXECUTE STATEMENT <query_text> [(<input_parameters>)]
 [ON EXTERNAL [DATA SOURCE] <connection_string>]
 [WITH {AUTONOMOUS | COMMON} TRANSACTION]
 [AS USER <user_name>]
 [PASSWORD <password>]
 [ROLE <role_name>]
 [WITH CALLER PRIVILEGES]
 [INTO <variables>]

Note: The order of the optional clauses is not fixed so, for example, a statement based on the
following model would be just as valid:

[ON EXTERNAL [DATA SOURCE] <connection_string>]
[WITH {AUTONOMOUS | COMMON} TRANSACTION]
[AS USER <user_name>]
[PASSWORD <password>]
[ROLE <role_name>]
[WITH CALLER PRIVILEGES]

Clauses cannot be duplicated.

Context issues

If there is no ON EXTERNAL DATA SOURCE clause present, EXECUTE STATEMENT is normally executed
within the CURRENT_CONNECTION context. This will be the case if the AS USER clause is omitted, or it
is present with its <user_name> argument equal to CURRENT_USER.

However, if <user_name> is not equal to CURRENT_USER, then the statement is executed in a
separate connection, established without Y-Valve and remote layers, inside the same engine instance.

http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:firebird2.1-language-reference:psql-statements:execute-statement
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:firebird2.1-language-reference:context-variables:current_connection
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:firebird2.1-language-reference:context-variables:current_user

Last
update:
2023/08/13
19:45

01-documentation:01-13-miscellaneous:glossary:autonomous-transaction http://ibexpert.com/docu/doku.php?id=01-documentation:01-13-miscellaneous:glossary:autonomous-transaction

http://ibexpert.com/docu/ Printed on 2023/09/15 21:04

Note: In the absence of an AS USER <user_name> clause, CURRENT_USER is the default.

Authentication

Where server authentication is needed for a connection that is different to CURRENT_CONNECTION,
e.g., for executing an EXECUTE STATEMENT command on an external datasource, the AS USER and
PASSWORD clauses are required. However, under some conditions, the PASSWORD may be omitted
and the effects will be as follows:

1. On Windows, for the CURRENT_CONNECTION (i.e., no external data source), trusted authentication
will be performed if it is active and the AS USER parameter is missing, null or equal to
CURRENT_USER.

2. If the external data source parameter is present and its <connection_string> refers to the same
database as the CURRENT_CONNECTION, the effective user account will be that of the
CURRENT_USER.

3. If the external data source parameter is present and its <connection_string> refers to a different
database than the one CURRENT_CONNECTION is attached to, the effective user account will be the
operating system account under which the Firebird process is currently running.

In any other case where the PASSWORD clause is missing, only isc_dpb_user_name will be presented
in the DPB (attachment parameters) and native authentication will be attempted.

Transaction behaviour

The new syntax has an optional clause for setting the appropriate transaction behaviour: WITH
AUTONOMOUS TRANSACTION and WITH COMMON TRANSACTION. WITH COMMON TRANSACTION is the
default and does not need to be specified. Transaction lifetimes are bound to the lifetime of
CURRENT_TRANSACTION and are committed or rolled back in accordance with the
CURRENT_TRANSACTION.

The behaviour for WITH COMMON TRANSACTION is as follows:

a. Causes any transaction in an external data source to be started with the same parameters as
CURRENT_TRANSACTION; otherwise

b. Executes the statement inside the CURRENT_TRANSACTION; or

c. May use another transaction that is started internally in CURRENT_CONNECTION.

The WITH AUTONOMOUS TRANSACTION setting starts a new transaction with the same parameters as
CURRENT_TRANSACTION. That transaction will be committed if the statement is executed without
exceptions or rolled back if the statement encounters an error.

Inherited access privileges

2023/09/15 21:04 5/12 Autonomous transactions

IBExpert - http://ibexpert.com/docu/

Vladyslav Khorsun

Tracker reference CORE-1928.

By design, the original implementation of EXECUTE STATEMENT isolated the executable code from the
access privileges of the calling stored procedure or trigger, falling back to the privileges available to
the CURRENT_USER. In general, the strategy is wise, since it reduces the vulnerability inherent in
providing for the execution of arbitrary statements. However, in hardened environments, or where
privacy is not an issue, it could present a limitation.

The introduction of the optional clause WITH CALLER PRIVILEGES now makes it possibe to have the
executable statement inherit the access privileges of the calling stored procedure or trigger. The
statement is prepared using any additional privileges that apply to the calling stored procedure or
trigger. The effect is the same as if the statement were executed by the stored procedure or trigger
directly.

Important: The WITH CALLER PRIVILEGES option is not compatible with the ON EXTERNAL DATA
SOURCE option.

back to top of page

External queries from PSQL

Vladyslav Khorsun

Tracker reference CORE-1853.

EXECUTE STATEMENT now supports queries against external databases by inclusion of the ON
EXTERNAL DATA SOURCE clause with its <connection_string> argument.

The <connection_string> argument

The format of <connection_string> is the usual one that is passed through the API function
isc_attach_database(), viz.

[<host_name><protocol_delimiter>]database_path

Character set

The connection to the external data source uses the same character set as is being used by the
CURRENT_CONNECTION context.

Access privileges

If the external data source is on another server then the clauses AS USER <user_name> and
PASSWORD <password> will be needed.

https://github.com/FirebirdSQL/firebird/issues/2362
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:stored-procedure
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:trigger
https://github.com/FirebirdSQL/firebird/issues/2282
http://ibexpert.com/docu/doku.php?id=01-documentation:01-13-miscellaneous:glossary:application-program-interface
http://ibexpert.com/docu/doku.php?id=01-documentation:01-13-miscellaneous:glossary:charset-character_set

Last
update:
2023/08/13
19:45

01-documentation:01-13-miscellaneous:glossary:autonomous-transaction http://ibexpert.com/docu/doku.php?id=01-documentation:01-13-miscellaneous:glossary:autonomous-transaction

http://ibexpert.com/docu/ Printed on 2023/09/15 21:04

The clause WITH CALLER PRIVILEGES is a no-op if the external data source is on another server.

MORE INFORMATION REQUIRED. ROLES?

Note: Use of a two-phase transaction for the external connection is not available in v.2.5.

EXECUTE STATEMENT with dynamic parameters

Vladyslav Khorsun Alex Peshkov

Tracker reference CORE-1221.

The new extensions provide the ability to prepare a statement with dynamic input parameters
(placeholders) in a manner similar to a parameterised DSQL statement. The actual text of the query
itself can also be passed as a parameter.

Syntax conventions

The mechanism employs some conventions to facilitate the run-time parsing and to allow the option
of “naming” parameters in a style comparable with the way some popular client wrapper layers, such
as Delphi, handle DSQL parameters. The API's own convention, of passing unnamed parameters in a
predefined order, is also supported.

However, named and unnamed parameters cannot be mixed.

The new binding operator

At this point in the implementation of the dynamic parameter feature, to avoid clashes with
equivalence tests, it was necessary to introduce a new assignment operator for binding run-time
values to named parameters. The new operator mimics the Pascal assignment operator:“:=”.

Syntax for defining parameters

<input_parameters> ::=
 <named_parameter> | <input_parameters>, <named_parameter>

<named_parameter> ::=

 <parameter name> := <expression>

Example for named input parameters

For example, the following block of PSQL defines both <query_text> and named <input_parameters>
(<named_parameter>):

https://tracker.firebirdsql.org/browse/CORE-1221
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:structured-query-language#dsql_-_dynamic_sql

2023/09/15 21:04 7/12 Autonomous transactions

IBExpert - http://ibexpert.com/docu/

EXECUTE BLOCK AS
 DECLARE S VARCHAR(255);
 DECLARE N INT = 100000;
 BEGIN
 /* Normal PSQL string assignment of <query_text> */
 S = 'INSERT INTO TTT VALUES (:a, :b, :a)';

 WHILE (N > 0) DO
 BEGIN
 /* Each loop execution applies both the string value
 and the values to be bound to the input parameters */

 EXECUTE STATEMENT (:S) (a := CURRENT_TRANSACTION, b :=
CURRENT_CONNECTION)
 WITH COMMON TRANSACTION;
 N = N - 1;
 END
END

Example for unnamed input parameters

A similar block using a set of unnamed input parameters instead and passing constant arguments
directly:

EXECUTE BLOCK AS
 DECLARE S VARCHAR(255);
 DECLARE N INT = 100000;
 BEGIN
 S = 'INSERT INTO TTT VALUES (?, ?, ?)';

 WHILE (N > 0) DO
 BEGIN
 EXECUTE STATEMENT (:S) (CURRENT_TRANSACTION, CURRENT_CONNECTION,
CURRENT_TRANSACTION);
 N = N - 1;
 END
 END

Note: Observe that, if you use both <query_text> and <input_parameters> then the <query_text>
must be enclosed in parentheses, viz.

EXECUTE STATEMENT (:sql) (p1 := 'abc', p2 := :second_param) ...

back to top of page

Exception handling

The handling of exceptions depends on whether the ON EXTERNAL DATA SOURCE is present.

http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:exception

Last
update:
2023/08/13
19:45

01-documentation:01-13-miscellaneous:glossary:autonomous-transaction http://ibexpert.com/docu/doku.php?id=01-documentation:01-13-miscellaneous:glossary:autonomous-transaction

http://ibexpert.com/docu/ Printed on 2023/09/15 21:04

ON EXTERNAL DATA SOURCE clause is present

If ON EXTERNAL DATA SOURCE clause is present, Firebird cannot interpret error codes supplied by the
unknown data source so it interprets the error information itself and wraps it as a string into its own
error wrapper (isc_eds_connection or isc_eds_statement).

The text of the interpreted remote error contains both error codes and corresponding messages.

1. Format of isc_eds_connection error

Template string
 Execute statement error at @1 :\n@2Data source : @3
Status-vector tags
 isc_eds_connection,
 isc_arg_string, <failed API function name>,
 isc_arg_string, <text of interpreted external error>,
 isc_arg_string, <data source name>

2. Format of isc_eds_statement error

Template string
 Execute statement error at @1 :\n@2Statement : @3\nData source : @4
Status-vector tags
 isc_eds_statement,
 isc_arg_string, <failed API function name>,
 isc_arg_string, <text of interpreted external error>,
 isc_arg_string, <query>,
 isc_arg_string, <data source name>

At PSQL level the symbols for these errors can be handled by treating them like any other gdscode.
For example

WHEN GDSCODE isc_eds_statement

Note: Currently, the originating error codes are not accessible in a WHEN statement. The situation
could be improved in future.

ON EXTERNAL DATA SOURCE clause is not present

If ON EXTERNAL DATA SOURCE clause is not present, the original status-vector with the error is
passed as-is to the caller PSQL code.

For example, if a dynamic statement were to raise the isc_lock_conflict exception, the exception
would be passed to the caller and could be handled using the usual handler:

WHEN GDSCODE isc_lock_conflict

back to top of page

http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:firebird2.1-language-reference:context-variables:gdscode

2023/09/15 21:04 9/12 Autonomous transactions

IBExpert - http://ibexpert.com/docu/

Examples using EXECUTE STATEMENT

The following examples offer a sampler of ways that the EXECUTE STATEMENT extensions might be
applied in your applications.

Test connections and transactions

A couple of tests you can try to compare variations in settings:

Test a) Execute this block few times in the same transaction - it will create three new connections to
the current database and reuse it in every call. Transactions are also reused.

EXECUTE BLOCK
 RETURNS (CONN INT, TRAN INT, DB VARCHAR(255))
AS
 DECLARE I INT = 0;
 DECLARE N INT = 3;
 DECLARE S VARCHAR(255);
BEGIN
 SELECT A.MON$ATTACHMENT_NAME FROM MON$ATTACHMENTS A
 WHERE A.MON$ATTACHMENT_ID = CURRENT_CONNECTION
 INTO :S;
 WHILE (i < N) DO
 BEGIN
 DB = TRIM(CASE i - 3 * (I / 3)
 WHEN 0 THEN '\\.\' WHEN 1 THEN 'localhost:' ELSE '' END) || :S;

 FOR EXECUTE STATEMENT
 'SELECT CURRENT_CONNECTION, CURRENT_TRANSACTION
 FROM RDB$DATABASE'
 ON EXTERNAL :DB
 AS USER CURRENT_USER PASSWORD 'masterkey' -- just for example
 WITH COMMON TRANSACTION
 INTO :CONN, :TRAN
 DO SUSPEND;

 i = i + 1;
 END
END

Test b) : Execute this block few times in the same transaction - it will create three new connections to
the current database on every call.

EXECUTE BLOCK
 RETURNS (CONN INT, TRAN INT, DB VARCHAR(255))
AS
 DECLARE I INT = 0;
 DECLARE N INT = 3;
 DECLARE S VARCHAR(255);

Last
update:
2023/08/13
19:45

01-documentation:01-13-miscellaneous:glossary:autonomous-transaction http://ibexpert.com/docu/doku.php?id=01-documentation:01-13-miscellaneous:glossary:autonomous-transaction

http://ibexpert.com/docu/ Printed on 2023/09/15 21:04

BEGIN
 SELECT A.MON$ATTACHMENT_NAME
 FROM MON$ATTACHMENTS A
 WHERE A.MON$ATTACHMENT_ID = CURRENT_CONNECTION
 INTO :S;

 WHILE (i < N) DO
 BEGIN
 DB = TRIM(CASE i - 3 * (I / 3)
 WHEN 0 THEN '\\.\'
 WHEN 1 THEN 'localhost:'
 ELSE '' END) || :S;

 FOR EXECUTE STATEMENT
 'SELECT CURRENT_CONNECTION, CURRENT_TRANSACTION FROM RDB$DATABASE'
 ON EXTERNAL :DB
 WITH AUTONOMOUS TRANSACTION -- note autonomous transaction
 INTO :CONN, :TRAN
 DO SUSPEND;

 i = i + 1;
 END
END

Input evaluation demo

Demonstrating that input expressions evaluated only once:

EXECUTE BLOCK
 RETURNS (A INT, B INT, C INT)
AS
BEGIN
 EXECUTE STATEMENT (
 'SELECT CAST(:X AS INT),
 CAST(:X AS INT),
 CAST(:X AS INT)
 FROM RDB$DATABASE')
 (x := GEN_ID(G, 1))
 INTO :A, :B, :C;
 SUSPEND;
END

Insert speed test

Recycling our earlier examples for input parameter usage for comparison with the non-parameterised
form of EXECUTE STATEMENT:

2023/09/15 21:04 11/12 Autonomous transactions

IBExpert - http://ibexpert.com/docu/

RECREATE TABLE TTT (
 TRAN INT,
 CONN INT,
 ID INT);

-- Direct inserts:

EXECUTE BLOCK AS
 DECLARE N INT = 100000;
BEGIN
 WHILE (N > 0) DO
 BEGIN
 INSERT INTO TTT VALUES (CURRENT_TRANSACTION, CURRENT_CONNECTION,
CURRENT_TRANSACTION);
 N = N - 1;
 END
END

-- Inserts via prepared dynamic statement
-- using named input parameters:

EXECUTE BLOCK AS
 DECLARE S VARCHAR(255);
 DECLARE N INT = 100000;
BEGIN
 S = 'INSERT INTO TTT VALUES (:a, :b, :a)';

 WHILE (N > 0) DO
 BEGIN
 EXECUTE STATEMENT (:S)
 (a := CURRENT_TRANSACTION, b := CURRENT_CONNECTION)
 WITH COMMON TRANSACTION;
 N = N - 1;
 END
END

-- Inserts via prepared dynamic statement
-- using unnamed input parameters:

EXECUTE BLOCK AS
DECLARE S VARCHAR(255);
DECLARE N INT = 100000;
BEGIN
 S = 'INSERT INTO TTT VALUES (?, ?, ?)';

 WHILE (N > 0) DO
 BEGIN
 EXECUTE STATEMENT (:S) (CURRENT_TRANSACTION, CURRENT_CONNECTION,
CURRENT_TRANSACTION);
 N = N - 1;
 END

Last
update:
2023/08/13
19:45

01-documentation:01-13-miscellaneous:glossary:autonomous-transaction http://ibexpert.com/docu/doku.php?id=01-documentation:01-13-miscellaneous:glossary:autonomous-transaction

http://ibexpert.com/docu/ Printed on 2023/09/15 21:04

END

back to top of page

Other PSQL improvements

Improvements made to existing PSQL syntax include the following:

Subqueries as PSQL expressions

A. dos Santos Fernandes

Tracker reference CORE-2580.

Previously, a subquery used as a PSQL expression would return an exception, even though it was
logically valid in SQL terms. For example, the following constructions would all return errors:

var = (select ... from ...);
if ((select ... from ...) = 1) then
if (1 = any (select ... from ...)) then
if (1 in (select ... from ...)) then

Now, such potentially valid expressions are allowed, removing the need to jump through hoops to
fetch the output of a scalar subquery into an intermediate variable using SELECT...INTO.

SQLSTATE as a context variable

D. Yemanov

Tracker reference CORE-2890.

(v.2.5.1) SQLSTATE is made available as a PSQL context variable, to be used with WHEN in an
exception block, like GDSCODE and SQLCODE.

From:
http://ibexpert.com/docu/ - IBExpert

Permanent link:
http://ibexpert.com/docu/doku.php?id=01-documentation:01-13-miscellaneous:glossary:autonomous-transaction

Last update: 2023/08/13 19:45

https://github.com/FirebirdSQL/firebird/issues/2990
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:exception
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:data-retrieval#select
https://github.com/FirebirdSQL/firebird/issues/3274
http://ibexpert.com/docu/
http://ibexpert.com/docu/doku.php?id=01-documentation:01-13-miscellaneous:glossary:autonomous-transaction

	Autonomous transactions
	Borrow database column type for a PSQL variable
	New extensions to EXECUTE STATEMENT
	Context issues
	Authentication
	Transaction behaviour
	Inherited access privileges
	External queries from PSQL
	The <connection_string> argument
	Character set
	Access privileges
	EXECUTE STATEMENT with dynamic parameters
	Syntax conventions
	The new binding operator
	Syntax for defining parameters

	Exception handling
	ON EXTERNAL DATA SOURCE clause is present
	ON EXTERNAL DATA SOURCE clause is not present
	Examples using EXECUTE STATEMENT
	Test connections and transactions
	Input evaluation demo
	Insert speed test
	Other PSQL improvements
	Subqueries as PSQL expressions
	SQLSTATE as a context variable

