
2023/09/26 05:34 1/7 Firebird 3.0 packages

IBExpert - http://ibexpert.com/docu/

Firebird 3.0 packages

Packages are a new database object type, which allows the logical grouping of stored procedures and
functions, similar to Oracle.

In IBExpert (since version 2021.02.09) it is possible to comment and uncomment package procedures
and functions. And the [Ctrl] + [C] shortcut in the list of package routines displays a Copy to clipboard
dialog with a choice of autogenerated statements.

The following is an excerpt from the The Firebird 3.0 Release Notes (29 November 2014 - Document
v.0300-16 - for Firebird 3.0 Beta 1) chapter, Procedural SQL (PSQL):

Packages

A. dos Santos Fernandes

Note: This feature was sponsored with donations gathered at the Fifth Brazilian Firebird Developers'
Day, 2008.

A package is a group of procedures and functions managed as one entity. The notion of “packaging”
the code components of a database operation addresses several objectives:

Modularisation

The idea is to separate blocks of interdependent code into logical modules, as programming
languages do.

In programming it is well recognised that grouping code in various ways, in namespaces, units or
classes, for example, is a good thing. With standard procedures and functions in the database this is

http://ibexpert.com/docu/lib/exe/detail.php?id=02-ibexpert%3A02-03-database-objects%3Afirebird3-packages&media=02-ibexpert:02-03-database-objects:firebird3_packages.png
https://www.ibexpert.net/ibe/uploads/Doc/Firebird-3.0.0_Beta1-ReleaseNotes.pdf
https://www.ibexpert.net/ibe/uploads/Doc/Firebird-3.0.0_Beta1-ReleaseNotes.pdf

Last
update:
2023/09/19
13:45

02-ibexpert:02-03-database-objects:firebird3-packages http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:firebird3-packages

http://ibexpert.com/docu/ Printed on 2023/09/26 05:34

not possible. Although they can be grouped in different script files, two problems remain:

1. The grouping is not represented in the database metadata.

2. Scripted routines all participate in a flat namespace and are callable by everyone (we are not
referring to security permissions here).

To facilitate dependency tracking

We want a mechanism to facilitate dependency tracking between a collection of related internal
routines, as well as between this collection and other routines, both packaged and unpackaged.

Firebird packages come in two parts: a header (keyword PACKAGE) and a body (keyword PACKAGE
BODY). This division is very similar to a Delphi unit, the header corresponding to the interface part
and the body corresponding to the implementation part.

The header is created first (CREATE PACKAGE) and the body (CREATE PACKAGE BODY) follows.

Whenever a packaged routine determines that it uses a certain database object, a dependency on
that object is registered in Firebird system tables. Thereafter, to drop, or maybe alter that object, you
first need to remove what depends on it. As it is a package body that depends on it, that package
body can just be dropped, even if some other database object depends on this package. When the
body is dropped, the header remains, allowing you to recreate its body once the changes related to
the removed object are done.

To facilitate permission management

It is good practice in general to create routines to require privileged use and to use roles or users to
enable the privileged use. As Firebird runs routines with the caller privileges, it is necessary also to
grant resource usage to each routine when these resources would not be directly accessible to the
caller. Usage of each routine to needs to be granted to users and/or roles.

Packaged routines do not have individual privileges. The privileges act on the package. Privileges
granted to packages are valid for all package body routines, including private ones, but are stored for
the package header.

For example:

GRANT SELECT ON TABLE secret TO PACKAGE pk_secret;
GRANT EXECUTE ON PACKAGE pk_secret TO ROLE role_secret;

To enable private scope

This objective was to introduce private scope to routines, viz., to make them available only for
internal usage within the defining package.

All programming languages have the notion of routine scope, which is not possible without some form
of grouping. Firebird packages also work like Delphi units in this regard. If a routine is not declared in
the package header (interface) and is implemented in the body (implementation), it becomes a
private routine. A private routine can only be called from inside its package.

2023/09/26 05:34 3/7 Firebird 3.0 packages

IBExpert - http://ibexpert.com/docu/

Signatures

For each routine that is assigned to a package, elements of a digital signature (the set of [routine
name, parameters and return type]) are stored in the system tables.

The signature of a procedure or routine can be queried, as follows:

SELECT...
-- sample query to come

Packaging syntax

<package_header> ::=
 { CREATE [OR ALTER] | ALTER | RECREATE } PACKAGE <name>
 AS
 BEGIN
 [<package_item> ...]
 END

<package_item> ::=
 <function_decl> ; |
 <procedure_decl> ;

<function_decl> ::=
 FUNCTION <name> [(<parameters>)] RETURNS <type>

<procedure_decl> ::=
 PROCEDURE <name> [(<parameters>) [RETURNS (<parameters>)]]

<package_body> ::=
 { CREATE | RECREATE } PACKAGE BODY <name>
 AS
 BEGIN
 [<package_item> ...]
 [<package_body_item> ...]
 END

<package_body_item> ::=
 <function_impl> |
 <procedure_impl>

<function_impl> ::=
 FUNCTION <name> [(<parameters>)] RETURNS <type>
 AS
 BEGIN
 ...
 END
 |
 FUNCTION <name> [(<parameters>)] RETURNS <type>

Last
update:
2023/09/19
13:45

02-ibexpert:02-03-database-objects:firebird3-packages http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:firebird3-packages

http://ibexpert.com/docu/ Printed on 2023/09/26 05:34

 EXTERNAL NAME '<name>' ENGINE <engine>

<procedure_impl> ::=
 PROCEDURE <name> [(<parameters>) [RETURNS (<parameters>)]]
 AS
 BEGIN
 ...
 END
 |
 PROCEDURE <name> [(<parameters>) [RETURNS (<parameters>)]]
 EXTERNAL NAME '<name>' ENGINE <engine>

<drop_package_header> ::=
 DROP PACKAGE <name>

<drop_package_body> ::=
 DROP PACKAGE BODY <name>

Syntax rules

All routines declared in the header and at the start of the body should be implemented in the
body with the same signature, i.e., you cannot declare the routine in different ways in the
header and in the body.
Default values for procedure parameters cannot be redefined in <package_item> and
<package_body_item>. They can be in <package_body_item> only for private procedures that
are not declared.

Notes:

DROP PACKAGE drops the package body before dropping its header.
The source of package bodies is retained after ALTER/RECREATE PACKAGE. The column
RDB$PACKAGES.RDB$VALID_BODY_FLAG indicates the state of the package body. See Tracker
item CORE-4487.
UDF declarations (DECLARE EXTERNAL FUNCTION) are currently not supported inside packages.
Syntax is available for a description (COMMENT ON) for package procedures and functions and
their parameters. See Tracker item CORE-4484.

Simple packaging example

SET TERM ^;
-- package header, declarations only
CREATE OR ALTER PACKAGE TEST
AS
BEGIN
 PROCEDURE P1(I INT) RETURNS (O INT); -- public procedure
END

-- package body, implementation
RECREATE PACKAGE BODY TEST

https://tracker.firebirdsql.org/browse/CORE-4487
https://tracker.firebirdsql.org/browse/CORE-4484

2023/09/26 05:34 5/7 Firebird 3.0 packages

IBExpert - http://ibexpert.com/docu/

AS
BEGIN
 FUNCTION F1(I INT) RETURNS INT; -- private function
 PROCEDURE P1(I INT) RETURNS (O INT)
 AS
 BEGIN
 END
 FUNCTION F1(I INT) RETURNS INT
 AS
 BEGIN
 RETURN 0;
 END
END ^

[Note: More examples can be found in the Firebird installation, in ../examples/package/]

Source: The Firebird 3.0 Release Notes by Helen Borrie (Collator/Editor): 29 November 2014 -
Dokument v.0300-16 - für Firebird 3.0 Beta 1.

back to top of page

Example using Soundex

Here is an example of a package, based on the Soundex feature we have also demonstrated in the
IBExpert documentation chapter, Firebird 3.0 Stored Functions: Example using Soundex.

You can envisage a package as a kind of hidden implementation. For example, here we have a
procedure called psoundex and the putils package:

ALTER PACKAGE PUTILS
AS
BEGIN
 PROCEDURE PSOUNDEX(
 WORD varchar(1000),
 LNG char(3),
 SLEN bigint = 4)
 RETURNS (SOUNDEX VARCHAR(1000)); -- public procedure
END

Now we'll implement the same function name from a package:

create or alter function SOUNDEX (
 WORD varchar(1000),
 LNG char(3),
 SLEN bigint = 4)
returns varchar(1000)
AS
declare variable res varchar(1000);
begin
 execute procedure putils.psoundex(:word,:lng,:slen) returning_values res;

http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:firebird3-stored-functions#example_using_soundex

Last
update:
2023/09/19
13:45

02-ibexpert:02-03-database-objects:firebird3-packages http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:firebird3-packages

http://ibexpert.com/docu/ Printed on 2023/09/26 05:34

 return res;
end

If we add a country-specific version of the Soundex function, we can implement the same functionality
and only reference here to the package. The implementation is inside this package.

And we can incorporate another procedure pii, adding to the package header:

procedure pii
returns (res numeric(18,16))

and then to the package body:

procedure pii
returns (res numeric(18,16))
as
begin
 res=3.141592;
 suspend;
end

If we then execute the query:

select * from putils.pii

we get the result:

3.141592

So you see, you can combine multiple procedures and/or functions into one package, for global
implementation.

Firebird 3.0 packages offer you possibilities to make your business logic a little more modular, offer
security features, and facilitate permission management and dependency tracking.

back to top of page

New system table RDB$PACKAGES

In Firebird 3.0 a new system table, RDB$PACKAGES, has been added and a new field,
RDB$PACKAGE_NAME, added to the existing RDB$PROCEDURES table, to store package metadata.

http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:system-objects-rdb_-mon_-ibe#system_tables_relating_to_procedures_and_triggers
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:system-objects-rdb_-mon_-ibe#system_tables_relating_to_procedures_and_triggers

2023/09/26 05:34 7/7 Firebird 3.0 packages

IBExpert - http://ibexpert.com/docu/

From:
http://ibexpert.com/docu/ - IBExpert

Permanent link:
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:firebird3-packages

Last update: 2023/09/19 13:45

http://ibexpert.com/docu/
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:firebird3-packages

	Firebird 3.0 packages
	Packages
	Signatures
	Packaging syntax
	Simple packaging example
	Example using Soundex

	New system table RDB$PACKAGES

