
2023/07/14 04:47 1/15 Writing Stored Procedures and Triggers

IBExpert - http://ibexpert.com/docu/

Writing Stored Procedures and Triggers

The stored procedure and trigger language is a language created to run in a database. For this reason
its range is limited to database operations and necessary functions; PSQL is in itself however a full
and powerful language, and offers more functionalities than you can use if you were just sat on the
client. The full range of keywords and functions available for use in procedures and triggers can be
found in the Structured Query Language chapter, Stored Procedure and Trigger Language. New
features can be found in the Firebird 2 Release Notes.

Firebird/InterBase® provides the same SQL extensions for use in both stored procedures and triggers.
These include the following statements:

DECLARE VARIABLE
BEGIN … END
SELECT … INTO : variable_list
Variable = Expression
/* comments */
EXECUTE PROCEDURE
FOR select DO …
IF condition THEN … ELSE …
WHILE condition DO …

and the following Firebird 2 features:

DECLARE <cursor_name> CURSOR FOR …
OPEN <cursor_name>
FETCH <cursor_name> INTO …
CLOSE <cursor_name>
LEAVE <label>
NEXT VALUE FOR <generator>

Both stored procedure and trigger statements includes SQL statements that are conceptually nested
inside the main statement. In order for Firebird/InterBase® to correctly parse and interpret a
procedure or trigger, the database software needs a way to terminate the CREATE PROCEDURE or
CREATE TRIGGER that is different from the way the statements inside the CREATE
PROCEDURE/TRIGGER are terminated. This can be done using the SET TERM statement.

back to top of page

Stored procedure

Firebird/InterBase® uses stored procedures as the programming environment for integrating active
processes in the database. Please refer to the IBExpert documentation chapter, Stored Procedure for
the definition, description and variables of a stored procedure along with comprehensive instructions
of how to use IBExpert's Stored Procedure Editor.

There are two types of stored procedure: executable and selectable. An executable procedure returns
no more than one set of variables. A select procedure can, using the SUSPEND keyword, push back
variables, one data set at a time. If an EXECUTE PROCEDURE statement contains a SUSPEND, then

http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:stored-procedure-and-trigger-language
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:structured-query-language
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:stored-procedure-and-trigger-language
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:stored-procedure
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:trigger
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:stored-procedure-and-trigger-language
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:stored-procedure
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:stored-procedure#stored_procedure_editor
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:stored-procedure#executing_stored_procedures
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:stored-procedure#select_procedures
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:stored-procedure#executing_stored_procedures
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:stored-procedure-and-trigger-language#suspend

Last
update:
2023/06/21
12:00

01-documentation:01-06-white-papers:firebird-development-using-ibexpert:writing-stored-procedures-and-triggers http://ibexpert.com/docu/doku.php?id=01-documentation:01-06-white-papers:firebird-development-using-ibexpert:writing-stored-procedures-and-triggers

http://ibexpert.com/docu/ Printed on 2023/07/14 04:47

SUSPEND has the same effect as EXIT. This usage is legal, but not recommended, and it is
unfortunately an error that even experienced programmers often make.

The syntax for declaring both types of stored procedure is the same, but there are two ways of
invoking or calling one: either a stored procedure can act like a functional procedure in another
language, in so far as you execute it and it either gives you one answer or no answers:

execute procedure <procedure_name>

It just goes away and does something. The other is to make a stored procedure a little more like a
table, in so far as you can

select * from <procedure_name>

and get data rows back as an answer.

Further reading:

Stored procedure
EXECUTE PROCEDURE
Stored procedure and trigger language
Stored procedure language

back to top of page

Simple procedures

An example of a very simple procedure that behaves like a table, using SUSPEND to provide the
returns:

CREATE PROCEDURE DUMMY
RETURNS (TXT VARCHAR(10))
AS
BEGIN
 TXT='DOG';
 SUSPEND;
 TXT='CAT';
 SUSPEND;
 TXT='MOUSE';
 SUSPEND;
END

In this example, the return variable is TXT. The text DOG is entered, and by specifying SUSPEND the
server pushes the result, DOG into the buffer onto a result set stack. When the next data set is
written, it is pushed onto the result pile. Using SUSPEND in a procedure, allows data definition that is
not possible in this form in an SQL. It is an extremely powerful aid, particularly for reporting.

http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:stored-procedure
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:stored-procedure#executing_stored_procedures
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:stored-procedure-and-trigger-language

2023/07/14 04:47 3/15 Writing Stored Procedures and Triggers

IBExpert - http://ibexpert.com/docu/

FOR SELECT ... DO ...SUSPEND

CREATE PROCEDURE SEARCH_ACTOR(
 NAME VARCHAR(50))
RETURNS (
 TITLE VARCHAR(50),
 ACTOR VARCHAR(50),
 PRICE NUMERIC(18,2))
AS
BEGIN
 FOR
 select TITLE,ACTOR,PRICE from product
 where actor containing :name
 INTO :TITLE,:ACTOR,:PRICE
 DO
 BEGIN
 SUSPEND;
 END
END

This procedure is first given a name, SEARCH_ACTOR, then an input parameter is specified, so that
the user can specify which name he wishes to search for. The columns to be returned are TITLE,
ACTOR and PRICE. The procedure then searches in a FOR …SELECT loop for the relevant information
in the table and returns any data sets meeting the condition in the input parameter.

It is also possible to add conditions; below all films costing more that $30.00 are to be rounded down
to $30.00:

CREATE PROCEDURE SEARCH_ACTOR(
 NAME VARCHAR(50))
RETURNS (
 TITLE VARCHAR(50),
 ACTOR VARCHAR(50),
 PRICE NUMERIC(18,2))
AS
BEGIN
 FOR
 SELECT TITLE,ACTOR,PRICE FROM PRODUCT
 WHERE ACTOR CONTAINING :NAME
 INTO :TITLE,:ACTOR,:PRICE
 DO
 BEGIN
 IF (PRICE<30)THEN PRICE=30
 SUSPEND;
 END
END

A good way of analyzing such procedures is to view them in the IBExpert Stored Procedure and
Trigger Debugger.

http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:stored-procedure#debug_procedure_trigger_function_ibexpert_debugger
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:stored-procedure#debug_procedure_trigger_function_ibexpert_debugger

Last
update:
2023/06/21
12:00

01-documentation:01-06-white-papers:firebird-development-using-ibexpert:writing-stored-procedures-and-triggers http://ibexpert.com/docu/doku.php?id=01-documentation:01-06-white-papers:firebird-development-using-ibexpert:writing-stored-procedures-and-triggers

http://ibexpert.com/docu/ Printed on 2023/07/14 04:47

To proceed further, the number of returns can be limited, for example, FIRST 10:

CREATE PROCEDURE SEARCH_ACTOR(
 NAME VARCHAR(50))
RETURNS (
 TITLE VARCHAR(50),
 ACTOR VARCHAR(50),
 PRICE NUMERIC(18,2))
AS
BEGIN
 FOR
 SELECT FIRST 10 TITLE,ACTOR,PRICE FROM PRODUCT
 WHERE ACTOR CONTAINING :NAME
 INTO :TITLE,:ACTOR,:PRICE
 DO
 BEGIN
 IF (PRICE<30)THEN PRICE=30
 SUSPEND;
 END
END

If you declare a variable for the FIRST statement, it needs to be put into brackets when referred to
lower down in the procedure:

CREATE PROCEDURE SEARCH_ACTOR(
 NAME VARCHAR(50))
RETURNS (
 TITLE VARCHAR(50),
 ACTOR VARCHAR(50),
 PRICE NUMERIC(18,2))
AS
DECLARE VARIABLE i INTEGER;
BEGIN
 FOR
 SELECT FIRST (:i) TITLE,ACTOR,PRICE FROM PRODUCT
 WHERE ACTOR CONTAINING :NAME
 INTO :TITLE,:ACTOR,:PRICE
 DO
 BEGIN
 IF (PRICE<30)THEN PRICE=30
 SUSPEND;
 END
END

back to top of page

FOR EXECUTE ... DO ...

EXECUTE STATEMENT allows statements to be used in procedures, allowing dynamic SQLs to be

2023/07/14 04:47 5/15 Writing Stored Procedures and Triggers

IBExpert - http://ibexpert.com/docu/

executed contained in a string expression. Here, the above example has been adapted accordingly:

CREATE PROCEDURE SEARCH_ACTOR(
 NAME VARCHAR(50))
RETURNS (
 TITLE VARCHAR(50),
 ACTOR VARCHAR(50),
 PRICE NUMERIC(18,2))
AS
Declare variable i integer;
BEGIN
 i=10;
 FOR
 execute statement
 'select first '|| :I ||' TITLE,ACTOR,PRICE from product
 where actor containing '''||name||''''
 INTO :TITLE,:ACTOR,:PRICE
 DO
 BEGIN
 if (price>30) then price=30;
 SUSPEND;
 END
END

It is also possible to define the SQL as a variable:

CREATE PROCEDURE SEARCH_ACTOR(
 NAME VARCHAR(50))
RETURNS (
 TITLE VARCHAR(50),
 ACTOR VARCHAR(50),
 PRICE NUMERIC(18,2))
AS
Declare variable i integer;
Declare variable SQL varchar(1000);
BEGIN
 i=10;
 Sql = 'select first '|| :i ||' TITLE,ACTOR,PRICE from product
 where actor containing '''||name||''''
 FOR
 execute statement :sql
 INTO :TITLE,:ACTOR,:PRICE
 DO
 BEGIN
 if (price>30) then price=30;
 SUSPEND;
 END
END

Theoretically it is possible to store complete SQL statements in the database itself, and they can be
called at any time. It allows an enormous flexibility and a high level of user customization. Using such

http://ibexpert.com/docu/doku.php?id=01-documentation:01-13-miscellaneous:glossary:string

Last
update:
2023/06/21
12:00

01-documentation:01-06-white-papers:firebird-development-using-ibexpert:writing-stored-procedures-and-triggers http://ibexpert.com/docu/doku.php?id=01-documentation:01-06-white-papers:firebird-development-using-ibexpert:writing-stored-procedures-and-triggers

http://ibexpert.com/docu/ Printed on 2023/07/14 04:47

dynamic procedures allows you to define your SQL at runtime, making on the fly alterations as the
situation may demand.

Note that not all SQL statements are allowed. Statements that alter the state of the current
transaction (such as COMMIT and ROLLBACK) are not allowed and will cause a runtime error.

The INTO clause is only meaningful if the SQL statement returns values, such as SELECT, INSERT …
RETURNING or UPDATE … RETURNING. If the SQL statement is a SELECT statement, it must be a
'singleton' SELECT, i.e. it must return exactly one row. To work with SELECT statements that return
multiple rows, use the FOR EXECUTE INTO statement.

It is not possible to use parameter markers (?) in the SQL statement, as there is no way to specify the
input actuals. Rather than using parameter markers, dynamically construct the SQL statement, using
the input actuals as part of the construction process.

back to top of page

WHILE ... DO

The WHILE ... DO statement also provides a looping capability. It repeats a statement as long as a
condition holds true. The condition is tested at the start of each loop.

LEAVE and BREAK

LEAVE and BREAK are used to exit a loop. You may want to exit a loop because you've found the
information you were looking for, or you only require, for example, the first 50 results.

By issuing a BREAK, if a specified condition isn't met, the procedure will break out of this loop and
carry on executing past it, i.e. you go out of the layer you're in and proceed to the next one.

LEAVE is new to Firebird 2.0. The LEAVE statement also terminates the flow in a loop, and moves to
the statement following the END statement that completes that loop. It is only available inside of
WHILE, FOR SELECT and FOR SELECT … DO …SUSPEND#FOR EXECUTE … DO …|FOR EXECUTE]]
statements, otherwise a syntax error is thrown.

The LEAVE «color #c3c3c3>label</color» syntax allows PSQL loops to be marked with labels and
terminated in Java style. They can be nested and exited back to a certain level using the «color
#c3c3c3>label</color» function. Using the BREAK statement this is possible using flags.

CNT = 100;
L1:
WHILE (CNT >= 0) DO
 BEGIN
 IF (CNT < 50) THEN
 LEAVE L1; -- exists WHILE loop
 CNT = CNT – l;
 END

The purpose is to stop execution of the current block and unwind back to the specified label. After

http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:data-transaction#commit
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:data-transaction#rollback
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:data-retrieval#select
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:stored-procedure-and-trigger-language#for_execute_into
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:stored-procedure-and-trigger-language#while_and_do

2023/07/14 04:47 7/15 Writing Stored Procedures and Triggers

IBExpert - http://ibexpert.com/docu/

that execution resumes at the statement following the terminated loop. Don't forget to specify the
condition carefully, otherwise you could end up with an infinite loop! As soon as you insert your WHILE
loop, specify whatever should cause the loop to finish.

Note that LEAVE without an explicit label means interrupting the current (most inner) loop:

FOR SELECT ... INTO
DO
 BEGIN
 IF () THEN
 SUSPEND;
 ELSE
 LEAVE; -- exits current loop
 END

The Firebird 2.0 keyword LEAVE deprecates the existing BREAK, so in new code the use of LEAVE is
preferred.

back to top of page

EXECUTE statement

To create a simple table statistic, we can create a new procedure, TBLSTATS:

CREATE PROCEDURE TBLSTATS
RETURNS (
 table_name VARCHAR(100),
 no_recordsInteger)
BEGIN
 FOR SELECT r.rdb$relation_name FROM rdb$relations r
 WHERE r.rdb$relation_name NOT CONTAINING '$'
 INTO :table_name
 DO
 BEGIN
 EXECUTE STATEMENT 'select count (*) from '||:table_name into
:no_records;
 END
 SUSPEND;
END

This TBLSTATS fetches a table and a count, and goes through all tables, pushes the table names in
and counts all data sets in the database, allowing you to see how large your tables are.

back to top of page

Recursions and modularity

If a procedure calls itself, it is recursive. Recursive procedures are useful for tasks that involve

Last
update:
2023/06/21
12:00

01-documentation:01-06-white-papers:firebird-development-using-ibexpert:writing-stored-procedures-and-triggers http://ibexpert.com/docu/doku.php?id=01-documentation:01-06-white-papers:firebird-development-using-ibexpert:writing-stored-procedures-and-triggers

http://ibexpert.com/docu/ Printed on 2023/07/14 04:47

repetitive steps. Each invocation of a procedure is referred to as an instance, since each procedure
call is a separate entity that performs as if called from an application, reserving memory and stack
space as required to perform its tasks.

Stored procedures can be nested up to 1,000 levels deep. This limitation helps to prevent infinite
loops that can occur when a recursive procedure provides no absolute terminating condition. Nested
procedure calls may be restricted to fewer than 1,000 levels by memory and stack limitations of the
server.

Recursive procedures are often built for tree structure. For example:

Create procedure spx
(inp integer)
returns
(outp integer)
as
declare variable vx integer;
declare variable vy integer;
begin
 ...
 execute procedure spx(:vx) returning values :vy;
 ...
end

The input integer is defined and the variables computed in some way. Then the procedure calls itself
and the returning values are returned to another variable.

A good example of this is a typical employee table in a large hierarchical company, where the table
has a column containing a pointer to the employees' boss. Every employee has a boss, and the
bosses have bosses, who may also have bosses. If you wished to see a list of all bosses for one
individual or the upstream management, then you could create a procedure selecting into and finish
this with a suspend. Then it would go and call the same procedure again, this time with the resulting
boss's ID. The procedure would carry on in this way until it reached the top level management, who
answer to no one (the CEO).

back to top of page

Debugging

Up to Firebird version 2.1, Firebird offered no integrated debugging API at all. The only solution was to
create log tables or external tables to record what the procedure was doing, and try to debug that
way. However, as your triggers and procedures become more complex, an intelligent and sound
debugging tool is vital.

Stored procedure and trigger debugger

IBExpert has an integrated Stored Procedure and Trigger Debugger which simulates running a

http://ibexpert.com/docu/doku.php?id=01-documentation:01-13-miscellaneous:glossary:application-program-interface
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:stored-procedure#debug_procedure_trigger_function_ibexpert_debugger

2023/07/14 04:47 9/15 Writing Stored Procedures and Triggers

IBExpert - http://ibexpert.com/docu/

procedure or trigger on the database server by interpreting the procedure and running the commands
one at a time.

It offers a number of useful functionalities, such as breakpoints, step into, trace or run to cursor, you
can watch certain parameters, analyze the performance and indices used, and you can even change
values on the fly. If you have Delphi experience you will easily find your way around the Debugger as
key strokes etc. are the same.

Please refer to the IBExpert documentation chapter, Debug procedure or trigger (IBExpert Debugger)
for details.

back to top of page

Optimizing procedures

Procedure operations are planned on Prepare, which means that the index plan is created upon the
first prepare. When working with huge amounts of data, it is critical that you write it, rewrite it, look at
each of the SQLs in it and break it down to ensure that it is optimally set up. A major contributing
factor to the performance and efficiency of procedures are indices. The subject of indices is an
extensive subject, which has been covered in detail in other areas of this documentation site:

Index
SQL Editor / Plan Analyzer
SQL Editor / Performance Analysis
Using the PLAN operator
IBExpert Table Editor / Indices
Recompute selectivity of all indices
Firebird Administration using IBExpert: The Firebird Optimizer and index statistics
Firebird Administration using IBExpert: Automating the recalculation of index statistics
Firebird for the database expert: Episode 1 - Indexes
Enhancements to indexing in Firebird 2.0

Also take into consideration the use of operators such as LIKE and CONTAINING, as well as the use of
strings such as %STRING%, as none of these can use indices. For example, in the DemoDB, db1,
compare:

http://ibexpert.com/docu/lib/exe/detail.php?id=01-documentation%3A01-06-white-papers%3Afirebird-development-using-ibexpert%3Awriting-stored-procedures-and-triggers&media=01-documentation:01-06-white-papers:firebird-development-using-ibexpert:debug1.png
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:stored-procedure#debug_procedure_trigger_function_ibexpert_debugger
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:index-indices
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-08-ibexpert-tools-menu:sql-editor#plan_analyzer
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-08-ibexpert-tools-menu:sql-editor#performance_analysis
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:data-retrieval#plan
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:table:table-editor#indices
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-02-ibexpert-database-menu:recompute-selectivity-of-all-indices
http://ibexpert.com/docu/doku.php?id=01-documentation:01-06-white-papers:firebird-administration-using-ibexpert:optimizing-performance#the_firebird_optimizer_and_index_statistics
http://ibexpert.com/docu/doku.php?id=01-documentation:01-06-white-papers:firebird-administration-using-ibexpert:optimizing-performance#automating_the_recalculation_of_index_statistics
http://ibexpert.com/docu/doku.php?id=01-documentation:01-05-database-technology:database-technology-articles:firebird-interbase-ods:firebird-for-the-database-expert-indexes

Last
update:
2023/06/21
12:00

01-documentation:01-06-white-papers:firebird-development-using-ibexpert:writing-stored-procedures-and-triggers http://ibexpert.com/docu/doku.php?id=01-documentation:01-06-white-papers:firebird-development-using-ibexpert:writing-stored-procedures-and-triggers

http://ibexpert.com/docu/ Printed on 2023/07/14 04:47

select * from product where actor like 'UMA%'

The server returns all data sets beginning with the name UMA. If you examine the Performance
Analysis:

you will see that 60 indexed read operations were performed, and the Plan Analysis shows that the
IX_PROD_ACTOR index was used:

If however you need to view all records where the name UMA appears somewhere in the ACTOR field:

select * from product where actor like ''

http://ibexpert.com/docu/lib/exe/detail.php?id=01-documentation%3A01-06-white-papers%3Afirebird-development-using-ibexpert%3Awriting-stored-procedures-and-triggers&media=01-documentation:01-06-white-papers:firebird-development-using-ibexpert:debug2.png
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-08-ibexpert-tools-menu:sql-editor#performance_analysis
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-08-ibexpert-tools-menu:sql-editor#performance_analysis
http://ibexpert.com/docu/lib/exe/detail.php?id=01-documentation%3A01-06-white-papers%3Afirebird-development-using-ibexpert%3Awriting-stored-procedures-and-triggers&media=01-documentation:01-06-white-papers:firebird-development-using-ibexpert:debug3.png
http://ibexpert.com/docu/lib/exe/detail.php?id=01-documentation%3A01-06-white-papers%3Afirebird-development-using-ibexpert%3Awriting-stored-procedures-and-triggers&media=01-documentation:01-06-white-papers:firebird-development-using-ibexpert:debug4.png

2023/07/14 04:47 11/15 Writing Stored Procedures and Triggers

IBExpert - http://ibexpert.com/docu/

Now the server has had to perform 10,000 non-indexed reads to fetch 95 records, rather more than
the 60 reads for the 60 resulting records in the last example!

So if you can, use STARTING WITH instead of LIKE or CONTAINING. Check each procedure operation
individually and remove bottlenecks, use the debugger and the SP/Triggers/Views Analyzer, check the
index plans, not forgetting to recompute the selectivity of your indices regularly. Check for indices on
columns used in WHERE and JOIN clauses. Use the Plan Analyzer and Performance Analysis to help
you compare and improve your more complex procedures.

Another consideration with extremely complex procedures is to postpone the SUSPEND. If you have a
SUSPEND on every data row on a report that may be returning thousands of rows of calculated
results, it will slow your system. If you wish to have an element of control over it, then put your
SUSPEND every 100 or 1,000 rows. This way the database server fills a buffer and sends the results
back in the specified quantity. It makes it more manageable, and you can stop it at any time should it
congest your system too much.

back to top of page

Using the SP/Triggers/Views Analyzer

A quick and easy method to review all your procedures (and triggers and views) is to use the IBExpert
Tools menu item, SP/Triggers/Views Analyzer.

http://ibexpert.com/docu/lib/exe/detail.php?id=01-documentation%3A01-06-white-papers%3Afirebird-development-using-ibexpert%3Awriting-stored-procedures-and-triggers&media=01-documentation:01-06-white-papers:firebird-development-using-ibexpert:debug5.png
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:stored-procedure#debug_procedure_trigger_function_ibexpert_debugger
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-02-ibexpert-database-menu:recompute-selectivity-of-all-indices
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-08-ibexpert-tools-menu:sql-editor#plan_analyzer
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-08-ibexpert-tools-menu:sql-editor#plan_analyzer
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:stored-procedure-and-trigger-language#suspend
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:trigger
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:view
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-08-ibexpert-tools-menu
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-08-ibexpert-tools-menu
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-08-ibexpert-tools-menu:sp-triggers-views-analyzer

Last
update:
2023/06/21
12:00

01-documentation:01-06-white-papers:firebird-development-using-ibexpert:writing-stored-procedures-and-triggers http://ibexpert.com/docu/doku.php?id=01-documentation:01-06-white-papers:firebird-development-using-ibexpert:writing-stored-procedures-and-triggers

http://ibexpert.com/docu/ Printed on 2023/07/14 04:47

This allows you to analyze a selection of actions for all or a filtered selection of procedures, triggers
and views in a database, providing information by statement, displaying plans and indices used,
issuing compatibility warnings and compiler warnings for all objects analyzed. Please refer to the
IBExpert chapter, SP/Triggers/Views Analyzer for details.

back to top of page

Complex SELECTs or selectable stored procedures?

Selectable procedures can sometimes offer higher performance than complex selects. For example:

CREATE PROCEDURE SPPROD
RETURNS (TITLE VARCHAR(50),TXT VARCHAR(20))
AS
declare variable cid bigint;
BEGIN
 FOR --outer select
 Select p.title,p.category_id
 from product p
 INTO :TITLE,:cid
 DO
 BEGIN
 select c.txt from category c
 where c.id=:cid into :txt; --inner select
 SUSPEND;
 END
END

This simple example is mimicking a join. You have a procedure here which is going to return a title
and some text. First it goes through all the products, selecting the relevant titles. This outer select is
however only providing one of the output fields. So another select is nested within the procedure,
providing the information for the second output field, cid.

http://ibexpert.com/docu/lib/exe/detail.php?id=01-documentation%3A01-06-white-papers%3Afirebird-development-using-ibexpert%3Awriting-stored-procedures-and-triggers&media=01-documentation:01-06-white-papers:firebird-development-using-ibexpert:debug6.png
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-08-ibexpert-tools-menu:sp-triggers-views-analyzer

2023/07/14 04:47 13/15 Writing Stored Procedures and Triggers

IBExpert - http://ibexpert.com/docu/

Although some developers feel there's no reason to construct procedures this way, ever so often you
will find that the optimizer really has a problem with a certain join, because it takes too long for it to
work out how to approach the query. Breaking things down like this can actually often provide a more
immediate response.

back to top of page

Trigger

A trigger on the other hand is a special table- or database-bound procedure that is started
automatically. After creating your database and constructing your table structure, you need to get
your triggers sorted. Triggers are extremely powerful - the so-called police force of the database.
They ensure database integrity because you just can't get round them. You, the developer, tell the
system how to invoke them and whether they should react to an INSERT, UPDATE or DELETE. And
once we're there in a table inserting, updating or deleting, it is impossible not to execute them. You
can specify whether your trigger should fire on an INSERT or an UPDATE or a DELETE, or on all three
actions (universal trigger).

Comprehensive details concerning triggers, how to create them, the different types and variables can
be found in the IBExpert documentation chapter, Trigger.

Don't put all your logic into one trigger, build up layers of them, e.g. one for generating the primary
key, one for logging or replication, one for passing on information of the data manipulation to another
table etc. The order in which such a series of triggers is executed can be important. The before insert
logging trigger needs to know the primary key, so the before insert primary key trigger needs to be
fired first. The firing position is user-defined, beginning with 0. Please refer to Trigger position in the
IBExpert documentation chapter, Trigger.

back to top of page

Using procedures to create and drop triggers

CREATE EXCEPTION ERRORTXT 'ERROR';
CREATE PROCEDURE createautoinc
AS
declare variable sql varchar(500);
declare variable tbl varchaR(30);
BEGIN
 FOR
 select rdb$relation_name from rdb$relations r
 where r.rdb$relation_name not containing '$'
 INTO :TBL
 DO
 BEGIN
 sql='CREATE trigger '||:tbl||'_bi0 for '||:tbl||' '||
 'active before insert position 0 AS '||
 'BEGIN '||
 ' if (new.id is null) then '||
 ' new.id = gen_id(id, 1); '||

http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:trigger#table_triggers
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:trigger#database_triggers
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:trigger#table_trigger_types
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:trigger#new_and_old_context_variables
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:trigger
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:trigger#new_trigger
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:trigger

Last
update:
2023/06/21
12:00

01-documentation:01-06-white-papers:firebird-development-using-ibexpert:writing-stored-procedures-and-triggers http://ibexpert.com/docu/doku.php?id=01-documentation:01-06-white-papers:firebird-development-using-ibexpert:writing-stored-procedures-and-triggers

http://ibexpert.com/docu/ Printed on 2023/07/14 04:47

 'END';
 execute statement :sql;
 END
 when any do exception errortxt :tbl;
END

This is a simple procedure which uses all table names (all tables are stored in rdb$relations) and
creates a BEFORE INSERT trigger which adds an autoincrement ID. The following procedure then
drops the trigger:

CREATE PROCEDURE dropautoinc
AS
declare variable sql varchar(500);
declare variable tbl varchaR(30);
BEGIN
 FOR
 select rdb$relation_name from rdb$relations r
 where r.rdb$relation_name not containing '$'
 INTO :TBL
 DO
 BEGIN
 sql='DROP trigger '||:tbl||'_bi0;';
 execute statement :sql;
 END
 when any do exception errortxt :tbl;
END

back to top of page

Using domains in stored procedures

Introduced in Firebird 2.1, this feature finally allows developers to declare local variables and input
and output arguments for stored procedures using domains in lieu of canonical data types. In earlier
Firebird versions it was necessary to write the data type of the domain instead of the domain name.
This meant a time-consuming checking of domain data types, which then had to be written in the
procedure definition. For example:

create procedure insert_orderline(
 article_name varchar(50),
 price decimal(15,2)
 active smallint
)
begin
 ...
end

In Firebird 2.1 you can either type the domain name if you also want any CHECK clauses and default
values to be taken into consideration, or use the TYPE OF keyword if you just want the data type. The
above example would then look something like this:

http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:stored-procedure#local_variables_declare_variable_statement
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:stored-procedure#stored_procedure_parameters_input_and_output_returns
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:stored-procedure#stored_procedure_parameters_input_and_output_returns
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:domain
http://ibexpert.com/docu/doku.php?id=01-documentation:01-13-miscellaneous:glossary:data-type
http://ibexpert.com/docu/doku.php?id=01-documentation:01-13-miscellaneous:glossary:data-type

2023/07/14 04:47 15/15 Writing Stored Procedures and Triggers

IBExpert - http://ibexpert.com/docu/

create procedure insert_orderline(
 article_name string,
 price currency,
 active bool
)
begin
 ...
end

From:
http://ibexpert.com/docu/ - IBExpert

Permanent link:
http://ibexpert.com/docu/doku.php?id=01-documentation:01-06-white-papers:firebird-development-using-ibexpert:writing-stored-procedures-and-triggers

Last update: 2023/06/21 12:00

http://ibexpert.com/docu/
http://ibexpert.com/docu/doku.php?id=01-documentation:01-06-white-papers:firebird-development-using-ibexpert:writing-stored-procedures-and-triggers

	Writing Stored Procedures and Triggers
	Stored procedure
	Simple procedures
	FOR SELECT ... DO ...SUSPEND
	FOR EXECUTE ... DO ...
	WHILE ... DO
	LEAVE and BREAK
	EXECUTE statement
	Recursions and modularity

	Debugging
	Stored procedure and trigger debugger
	Optimizing procedures
	Using the SP/Triggers/Views Analyzer
	Complex SELECTs or selectable stored procedures?
	Trigger
	Using procedures to create and drop triggers
	Using domains in stored procedures

