
2023/08/09 10:22 1/8 Appendix A: Notes

IBExpert - http://ibexpert.com/docu/

Appendix A: Notes

Character set NONE data accepted "as is"

In Firebird 1.5.1 and up

Firebird 1.5.1 has improved the way character set NONE data are moved to and from fields or
variables with another character set, resulting in fewer transliteration errors.

In Firebird 1.5.0, from a client connected with character set NONE, you could read data in two
incompatible character sets – such as SJIS (Japanese) and WIN1251 (Russian) – even though you could
not read one of those character sets while connected from a client with the other character set. Data
would be received “as is” and be stored without raising an exception.

However, from this character set NONE client connection, an attempt to update any Russian or
Japanese data columns using either parameterized queries or literal strings without introducer syntax
would fail with transliteration errors; and subsequent queries on the stored NONE data would similarly
fail.

In Firebird 1.5.1, both problems have been circumvented. Data received from the client in character
set NONE are still stored “as is” but what is stored is an exact, binary copy of the received string. In
the reverse case, when stored data are read into this client from columns with specific character sets,
there will be no transliteration error. When the connection character set is NONE, no attempt is made
in either case to resolve the string to wellformed characters, so neither the write nor the read will
throw a transliteration error.

This opens the possibility for working with data from multiple character sets in a single database, as
long as the connection character set is NONE. The client has full responsibility for submitting strings in
the appropriate character set and converting strings returned by the engine, as needed.

Abstraction layers that have to manage this can read the low byte of the sqlsubtype field in the
XSQLVAR structure, which contains the character set identifier.

While character set NONE literals are accepted and implicitly stored in the character set of their
context, the use of introducer syntax to coerce the character sets of literals is highly recommended
when the application is handling literals in a mixture of character sets. This should avoid the string's
being misinterpreted when the application shifts the context for literal usage to a different character
set.

Note: Coercion of the character set, using the introducer syntax or casting, is still required when
handling heterogeneous character sets from a client context that is anything other than NONE. Both
methods are shown below, using character set ISO8859_1 as an example target. Notice the “_” prefix
in the introducer syntax.

Introducer syntax:

_ISO8859_1 mystring

http://ibexpert.com/docu/doku.php?id=01-documentation:01-13-miscellaneous:glossary:charset-character_set
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:field
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:stored-procedure#local_variables_declare_variable_statement
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:exception

Last
update:
2023/07/21
17:33

01-documentation:01-09-sql-language-references:firebird2.0-language-reference:appendix-a-notes http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:firebird2.0-language-reference:appendix-a-notes

http://ibexpert.com/docu/ Printed on 2023/08/09 10:22

Casting:

CAST (mystring AS VARCHAR(n) CHARACTER SET ISO8859_1)

See also:

Default character set
Field and domain character sets
SET NAMES
New character sets

back to top of page

Understanding the WITH LOCK clause

This note looks a little deeper into explicit locking and its ramifications. The WITH LOCK feature,
added in Firebird 1.5, provides a limited explicit pessimistic locking capability for cautious use in
conditions where the affected row set is:

a. extremely small (ideally, a singleton), and

b. precisely controlled by the application code.

Pessimistic locks are rarely needed in Firebird. This is an expert feature, intended for use by those
who thoroughly understand its consequences. Knowledge of the various levels of transaction isolation
is essential. WITH LOCK is available in DSQL and PSQL, and only for top-level, single-table SELECTs. As
stated in the reference part of this guide, WITH LOCK is not available:

in a subquery specification;
for joined sets;
with the DISTINCT operator, a GROUP BY clause or any other aggregating operation;
with a view;
with the output of a selectable stored procedure;
with an external table.

Syntax and behaviour

SELECT ... FROM single_table
 [WHERE ...]
 [FOR UPDATE [OF ...]]
 [WITH LOCK]

If the WITH LOCK clause succeeds, it will secure a lock on the selected rows and prevent any other
transaction from obtaining write access to any of those rows, or their dependants, until your
transaction ends.

If the FOR UPDATE clause is included, the lock will be applied to each row, one by one, as it is fetched

http://ibexpert.com/docu/doku.php?id=01-documentation:01-13-miscellaneous:glossary:default-character-set
http://ibexpert.com/docu/doku.php?id=01-documentation:01-13-miscellaneous:glossary:charset-character_set
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:ddl#set_names
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:firebird2.0-language-reference:data-types-and-subtypes#new_character_sets
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:firebird2.0-language-reference:dml-statements:select#with_lock
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:structured-query-language#dsql_-_dynamic_sql
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:stored-procedure-and-trigger-language
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:start#subquery
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:join
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:data-retrieval#distinct
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:data-retrieval#group_by
http://ibexpert.com/docu/doku.php?id=01-documentation:01-13-miscellaneous:glossary:aggregate-functions
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:view
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:stored-procedure#select_procedures
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:table
http://ibexpert.com/docu/doku.php?id=01-documentation:01-13-miscellaneous:glossary:row
http://ibexpert.com/docu/doku.php?id=01-documentation:01-13-miscellaneous:glossary:transaction
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:data-retrieval#for_update

2023/08/09 10:22 3/8 Appendix A: Notes

IBExpert - http://ibexpert.com/docu/

into the server-side row cache. It becomes possible, then, that a lock which appeared to succeed
when requested will nevertheless fail subsequently, when an attempt is made to fetch a row which
becomes locked by another transaction.

As the engine considers, in turn, each record falling under an explicit lock statement, it returns either
the record version that is the most currently committed, regardless of database state when the
statement was submitted, or an exception.

Wait behaviour and conflict reporting depend on the transaction parameters specified in the TPB
block:

Table A.1. How TPB settings affect explicit locking

TPB mode Behaviour

isc_tpb_consistency Explicit locks are overridden by implicit or explicit table-
level locks and are ignored.

isc_tpb_concurrency +
isc_tpb_nowait

If a record is modified by any transaction that was
committed since the transaction attempting to get explicit
lock started, or an active transaction has performed a
modification of this record, an update conflict exception is
raised immediately.

isc_tpb_concurrency +
isc_tpb_wait

If the record is modified by any transaction that has
committed since the transaction attempting to get explicit
lock started, an update conflict exception is raised
immediately. If an active transaction is holding ownership
on this record (via explicit locking or by a normal optimistic
write-lock) the transaction attempting the explicit lock
waits for the outcome of the blocking transaction and,
when it finishes, attempts to get the lock on the record
again. This means that, if the blocking transaction
committed a modified version of this record, an update
conflict exception will be raised.

isc_tpb_read_committed +
isc_tpb_nowait

If there is an active transaction holding ownership on this
record (via explicit locking or normal update), an update
conflict exception is raised immediately.

isc_tpb_read_committed +
isc_tpb_wait

If there is an active transaction holding ownership on this
record (via explicit locking or by a normal optimistic write-
lock), the transaction attempting the explicit lock waits for
the outcome of blocking transation and when it finishes,
attempts to get the lock on the record again. Update
conflict exceptions can never be raised by an explicit lock
statement in this TPB mode.

back to top of page

How the engine deals with WITH LOCK

When an UPDATE statement tries to access a record that is locked by another transaction, it either
raises an update conflict exception or waits for the locking transaction to finish, depending on TPB
mode. Engine behaviour here is the same as if this record had already been modified by the locking
transaction.

http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:exception
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:firebird2.0-language-reference:dml-statements:update
http://ibexpert.com/docu/doku.php?id=01-documentation:01-13-miscellaneous:glossary:transaction
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:exception

Last
update:
2023/07/21
17:33

01-documentation:01-09-sql-language-references:firebird2.0-language-reference:appendix-a-notes http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:firebird2.0-language-reference:appendix-a-notes

http://ibexpert.com/docu/ Printed on 2023/08/09 10:22

No special gdscodes are returned from conflicts involving pessimistic locks.

The engine guarantees that all records returned by an explicit lock statement are actually locked and
do meet the search conditions specified in WHERE clause, as long as the search conditions do not
depend on any other tables, via joins, subqueries, etc. It also guarantees that rows not meeting the
search conditions will not be locked by the statement. It can not guarantee that there are no rows
which, though meeting the search conditions, are not locked.

Note: This situation can arise if other, parallel transactions commit their changes during the course of
the locking statement's execution.

The engine locks rows at fetch time. This has important consequences if you lock several rows at
once. Many access methods for Firebird databases default to fetching output in packets of a few
hundred rows (“buffered fetches”). Most data access components cannot bring you the rows
contained in the last-fetched packet, where an error occurred.

back to top of page

The optional OF <column-names> sub-clause

The FOR UPDATE clause provides a technique to prevent usage of buffered fetches, optionally with
the OF <column-names> subclause to enable positioned updates.

Tip: Alternatively, it may be possible in your access components to set the size of the fetch buffer to
1. This would enable you to process the currently-locked row before the next is fetched and locked, or
to handle errors without rolling back your transaction.

Caveats using WITH LOCK

Rolling back of an implicit or explicit savepoint releases record locks that were taken under that
savepoint, but it doesn't notify waiting transactions. Applications should not depend on this
behaviour as it may get changed in the future.
While explicit locks can be used to prevent and/or handle unusual update conflict errors, the
volume of deadlock errors will grow unless you design your locking strategy carefully and
control it rigorously.
Most applications do not need explicit locks at all. The main purposes of explicit locks are (1) to
prevent expensive handling of update conflict errors in heavily loaded applications and (2) to
maintain integrity of objects mapped to a relational database in a clustered environment. If your
use of explicit locking doesn't fall in one of these two categories, then it's the wrong way to do
the task in Firebird.
Explicit locking is an advanced feature; do not misuse it! While solutions for these kinds of
problems may be very important for web sites handling thousands of concurrent writers, or for
ERP/CRM systems operating in large corporations, most application programs do not need to
work in such conditions.

Examples using explicit locking

http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:data-retrieval#where
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:table
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:join
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:query#subquery
http://ibexpert.com/docu/doku.php?id=01-documentation:01-13-miscellaneous:glossary:row
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:data-retrieval#for_update
https://www.ibexpert.net/ibe/pmwiki.php?n=Doc.SAVEPOINT
http://ibexpert.com/docu/doku.php?id=01-documentation:01-13-miscellaneous:glossary:transaction

2023/08/09 10:22 5/8 Appendix A: Notes

IBExpert - http://ibexpert.com/docu/

i. Simple:

SELECT * FROM DOCUMENT WHERE ID=? WITH LOCK

ii. Multiple rows, one-by-one processing with DSQL cursor:

SELECT * FROM DOCUMENT WHERE PARENT_ID=?
 FOR UPDATE WITH LOCK

back to top of page

A note on CSTRING parameters

External functions involving strings often use the type CSTRING(n) in their declarations. This type
represents a zero-terminated string of maximum length n. Most of the functions handling CSTRINGs
are programmed in such a way that they can accept and return zero-terminated strings of any length.
So why the n? Because the Firebird engine has to set up space to process the input an output
parameters, and convert them to and from SQL data types. Most strings used in databases are only
dozens to hundreds of bytes long; it would be a waste to reserve 32 KB of memory each time such a
string is processed. Therefore, the standard declarations of most CSTRING functions – as found in the
file ib_udf.sql – specifiy a length of 255 bytes. (In Firebird 1.5.1 and below, this default length is 80
bytes.) As an example, here's the SQL declaration of lpad:

DECLARE EXTERNAL FUNCTION lpad
 CSTRING(255), INTEGER, CSTRING(1)
 RETURNS CSTRING(255) FREE_IT
 ENTRY_POINT 'IB_UDF_lpad' MODULE_NAME 'ib_udf'

Once you've declared a CSTRING parameter with a certain length, you cannot call the function with a
longer input string, or cause it to return a string longer than the declared output length. But the
standard declarations are just reasonable defaults; they're not cast in concrete, and you can change
them if you want to. If you have to leftpad strings of up to 500 bytes long, then it's perfectly OK to
change both 255's in the declaration to 500 or more.

A special case is when you usually operate on short strings (say less then 100 bytes) but occasionally
have to call the function with a huge (VAR)CHAR argument. Declaring CSTRING(32000) makes sure
that all the calls will be successful, but it will also cause 32000 bytes per parameter to be reserved,
even in that majority of cases where the strings are under 100 bytes. In that situation you may
consider declaring the function twice, with different names and different string lengths:

DECLARE EXTERNAL FUNCTION lpad
 CSTRING(100), INTEGER, CSTRING(1)
 RETURNS CSTRING(100) FREE_IT
 ENTRY_POINT 'IB_UDF_lpad' MODULE_NAME 'ib_udf';

DECLARE EXTERNAL FUNCTION lpadbig
 CSTRING(32000), INTEGER, CSTRING(1)
 RETURNS CSTRING(32000) FREE_IT

http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:user-defined-function
http://ibexpert.com/docu/doku.php?id=01-documentation:01-13-miscellaneous:glossary:string
http://ibexpert.com/docu/doku.php?id=01-documentation:01-13-miscellaneous:glossary:data-type
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:firebird2.0-language-reference:external-functions
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:firebird2.0-language-reference:external-functions
http://ibexpert.com/docu/doku.php?id=01-documentation:01-13-miscellaneous:glossary:varchar

Last
update:
2023/07/21
17:33

01-documentation:01-09-sql-language-references:firebird2.0-language-reference:appendix-a-notes http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:firebird2.0-language-reference:appendix-a-notes

http://ibexpert.com/docu/ Printed on 2023/08/09 10:22

 ENTRY_POINT 'IB_UDF_lpad' MODULE_NAME 'ib_udf';

Now you can call lpad() for all the small strings and lpadbig() for the occasional monster. Notice how
the declared names in the first line differ (they determine how you call the functions from within your
SQL), but the entry point (the function name in the library) is the same in both cases.

See also:

SET TRANSACTION
SELECT [WITH LOCK]

back to top of page

Passing NULL to UDFs in Firebird 2

If a pre-2.0 Firebird engine must pass an SQL NULL argument to a user-defined function, it always
converts it to a zero-equivalent, e.g. a numerical 0 or an empty string. The only exception to this rule
are UDFs that make use of the BY DESCRIPTOR mechanism introduced in Firebird 1. The fbudf library
uses descriptors, but the vast majority of UDFs, including those in Firebird's standard ib_udf library,
still use the old style of parameter passing, inherited from InterBase.

As a consequence, most UDFs can't tell the difference between NULL and zero input.

Firebird 2 comes with a somewhat improved calling mechanism for these old-style UDFs. The engine
will now pass NULL input as a null pointer to the function, if the function has been declared to the
database with a NULL keyword after the argument(s) in question, e.g. like this:

declare external function ltrim
 cstring(255) null
 returns cstring(255) free_it
 entry_point 'IB_UDF_ltrim' module_name 'ib_udf';

This requirement ensures that existing databases and their applications can continue to function like
before. Leave out the NULL keyword and the function will behave like it did under Firebird 1.5 and
earlier.

Please note that you can't just add NULL keywords to your declarations and then expect every
function to handle NULL input correctly. Each function has to be (re)written in such a way that NULLs
are dealt with correctly. Always look at the declarations provided by the function implementor. For the
functions in the ib_udf library, consult ib_udf2.sql in the Firebird UDF directory. Notice the 2 in the
filename; the old-style declarations are in ib_udf.sql.

These are the ib_udf functions that have been updated to recognise NULL input and handle it
properly:

ascii_char
lower
lpad and rpad
ltrim and rtrim

http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:ddl#entry_point
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:firebird2.0-language-reference:transaction-control-statements:set-transaction
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:firebird2.0-language-reference:dml-statements:select#with_lock
http://ibexpert.com/docu/doku.php?id=01-documentation:01-13-miscellaneous:glossary:null
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:user-defined-function
http://ibexpert.com/docu/doku.php?id=01-documentation:01-13-miscellaneous:glossary:numeric
http://ibexpert.com/docu/doku.php?id=01-documentation:01-13-miscellaneous:glossary:string
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:firebird2.0-language-reference:ddl-statement:declare-external-function#by_descriptor_parameter_passing
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:firebird2.0-language-reference:external-functions:ascii_char
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:firebird2.0-language-reference:external-functions:lower
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:firebird2.0-language-reference:external-functions:lpad
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:firebird2.0-language-reference:external-functions:rpad
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:firebird2.0-language-reference:external-functions:ltrim
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:firebird2.0-language-reference:external-functions:rtrim

2023/08/09 10:22 7/8 Appendix A: Notes

IBExpert - http://ibexpert.com/docu/

substr and substrlen

Most ib_udf functions remain as they were; in any case, passing NULL to an old-style UDF is never
possible if the argument isn't of a referenced type.

On a side note: don't use lower, trim and substr* in new code; use the internal functions LOWER, TRIM
and SUBSTRING instead.

back to top of page

"Upgrading" ib_udf functions in an existing database

If you are using an existing database with one or more of the functions listed above under Firebird 2,
and you want to benefit from the improved NULL handling, run the script ib_udf_upgrade.sql against
your database. It is located in the Firebird misc\upgrade\ib_udf directory.

See also:

Expressions involving NULL
External functions (UDFs)
User-defined function (UDF)
UDFs callable as void functions
DECLARE EXTERNAL FUNCTION (incorporating a new UDF library)
ALTER EXTERNAL FUNCTION
DECLARE EXTERNAL FUNCTION
DROP EXTERNAL FUNCTION
Threaded Server and UDFs
Using descriptors with UDFs

back to top of page

Maximum number of indices in different
Firebird versions

Between Firebird 1.0 and 2.0 there have been quite a few changes in the maximum number of indices
per database table. The table below sums them all up.

Table A.2. Max. indices per table in Firebird 1.0 – 2.0

Page Firebird
version(s)

Firebird
version(s)

Firebird
version(s)

Firebird
version(s)

Firebird
version(s)

Firebird
version(s)

Firebird
version(s)

Firebird
version(s)

Firebird
version(s)

Firebird
version(s)

Firebird
version(s)

Firebird
version(s)

size 1.0, 1.0.2 1.0, 1.0.2 1.0, 1.0.2 1.0.3 1.0.3 1.0.3 1.5.x 1.5.x 1.5.x 2.0.x 2.0.x 2.0.x
1 col 2 cols 3 cols 1 col 2 cols 3 cols 1 col 2 cols 3 cols 1 col 2 cols 3 cols

1024 62 50 41 62 50 41 62 50 41 50 35 27
2048 65 65 65 126 101 84 126 101 84 101 72 56
4096 65 65 65 254 203 169 254 203 169 203 145 113
8192 65 65 65 510 408 340 257 257 257 408 291 227
16384 65 65 65 1022 818 681 257 257 257 818 584 454

http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:firebird2.0-language-reference:external-functions:substr
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:firebird2.0-language-reference:external-functions:substrlen
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:firebird2.0-language-reference:external-functions:lower
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:firebird2.0-language-reference:external-functions:ltrim
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:firebird2.0-language-reference:external-functions:substr
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:firebird2.0-language-reference:external-functions:lower
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:firebird2.0-language-reference:external-functions:ltrim
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:firebird2.0-language-reference:external-functions:substrlen
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:firebird-sql#expressions_involving_null
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:firebird2.0-language-reference:external-functions
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:user-defined-function
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:firebird2.0-language-reference:psql-statements:udfs-callable-as-void-functions
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:ddl#declare_external_function_incorporating_a_new_udf_library
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:firebird2.0-language-reference:ddl-statement:alter-external-function
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:firebird2.0-language-reference:ddl-statement:declare-external-function
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:user-defined-function#drop_external_function_drop_udf
http://ibexpert.com/docu/doku.php?id=01-documentation:01-05-database-technology:database-technology-articles:firebird-interbase-server:firebird-classic-server-versus-superserver#threaded_server_udfs
http://ibexpert.com/docu/doku.php?id=01-documentation:01-05-database-technology:database-technology-articles:working-with-firebird-interbase:using-descriptors-with-udfs
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:index-indices
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:table

Last
update:
2023/07/21
17:33

01-documentation:01-09-sql-language-references:firebird2.0-language-reference:appendix-a-notes http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:firebird2.0-language-reference:appendix-a-notes

http://ibexpert.com/docu/ Printed on 2023/08/09 10:22

From:
http://ibexpert.com/docu/ - IBExpert

Permanent link:
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:firebird2.0-language-reference:appendix-a-notes

Last update: 2023/07/21 17:33

http://ibexpert.com/docu/
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:firebird2.0-language-reference:appendix-a-notes

	Appendix A: Notes
	Character set NONE data accepted "as is"
	Understanding the WITH LOCK clause
	Syntax and behaviour
	How the engine deals with WITH LOCK
	The optional OF <column-names> sub-clause
	Caveats using WITH LOCK
	Examples using explicit locking

	A note on CSTRING parameters
	Passing NULL to UDFs in Firebird 2
	"Upgrading" ib_udf functions in an existing database

	Maximum number of indices in different Firebird versions

