
2023/08/09 00:30 1/9 Stored procedure and trigger language

IBExpert - http://ibexpert.com/docu/

Stored procedure and trigger language

The Firebird/InterBase® procedure and trigger language (which is also used for and dynamic
executable blocks) includes all the constructs of a basic structured programming language, as well as
statements unique to working with table data. The SQL SELECT, INSERT, UPDATE and DELETE
statements can be used in stored procedures exactly as they are used in a query, with only minor
syntax changes. Local variables or input parameters can be used for all of these statements in any
place that a literal value is allowed. Certain constructs, including all DDL (Data Definition Language)
statements, are omitted.

Firebird 2.0 introduced high performance cursor processing, for cursors originating from a SELECT
query and for cursors originating from a Select procedures|selectable stored procedure. And since
Firebird 2.1 domains can be used in PSQL. Please refer to Using domains in procedures for details and
examples. Collations can also now be applied to PSQL variables and arguments.

Firebird 2.5 introduced several significant changes to Firebird's procedural language (PSQL),
especially with regard to new extensions to the capabilities of EXECUTE STATEMENT. See below for
details.

Because PSQL programs run on the server, data transfer between the relational core and the PSQL
engine is very fast, much faster than transfer to a client application.

Other statements that are specific to stored procedures include, among others, error handling and
raising exceptions. Please refer to the relevant sections for further information.

Note that the string concatenation operator in Firebird/InterBase® procedure and trigger language is
|| (a double vertical bar, or pipe), and not the + that is used in many programming languages. Please
refer to concatenation of strings for further information.

Within a trigger or stored procedure, statements are separated by semicolons.

For further reading, particularly for those new to PSQL, please refer to Writing stored procedures and
triggers.

Summary of PSQL commands
Command Description
BEGIN <statements> END Compound statement like in PASCAL.

variable = expression Assignment. variable can be a local variable, an in or an
out parameter.

compound_statement A single command or a BEGIN/END block.

select_statement

Normal SELECT statement. The INTO clause must be
present at the end of the statement. Variable names can
be used with a colon preceding them. Example: SELECT
PRICE FROM ARTICLES WHERE ARTNO = :ArticleNo INTO
:EPrice

/* Comment */ Comment, like in C.
– Comment Single line SQL comment.

http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:table
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:dml#select
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:dml#insert
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:dml#update
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:dml#delete
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:stored-procedure
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:query
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:stored-procedure#local_variables_declare_variable_statement
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:stored-procedure#stored_procedure_parameters_input_and_output_returns
http://ibexpert.com/docu/doku.php?id=01-documentation:01-13-miscellaneous:glossary:statement-definition
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:ddl
http://ibexpert.com/docu/doku.php?id=01-documentation:01-08-firebird-documentation:firebird-2.0.4-release-notes:stored-procedure-language#explicit_cursors
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:stored-procedure
http://ibexpert.com/docu/doku.php?id=01-documentation:01-06-white-papers:firebird-development-using-ibexpert:writing-stored-procedures-and-triggers#using_domains_in_stored_procedures
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:stored-procedure
http://ibexpert.com/docu/doku.php?id=01-documentation:01-13-miscellaneous:glossary:string
http://ibexpert.com/docu/doku.php?id=01-documentation:01-13-miscellaneous:glossary:operator
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:firebird-sql
http://ibexpert.com/docu/doku.php?id=01-documentation:01-13-miscellaneous:glossary:trigger
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:stored-procedure
http://ibexpert.com/docu/doku.php?id=01-documentation:01-06-white-papers:firebird-development-using-ibexpert:writing-stored-procedures-and-triggers
http://ibexpert.com/docu/doku.php?id=01-documentation:01-06-white-papers:firebird-development-using-ibexpert:writing-stored-procedures-and-triggers

Last
update:
2023/07/19
12:55

01-documentation:01-09-sql-language-references:language-reference:stored-procedure-and-trigger-language http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:stored-procedure-and-trigger-language

http://ibexpert.com/docu/ Printed on 2023/08/09 00:30

Command Description
DECLARE VARIABLE name datatype [=
startval] Variable declaration. After AS, before the first BEGIN.

EXCEPTION Re-fire the current exception. Only makes sense in a
WHEN clause.

EXCEPTION name [message] Fire the specified exception. Can be handled with WHEN.
EXECUTE PROCEDURE name arg, arg
RETURNING_VALUES arg, arg

Calling a procedure. arg's must be local variables. Nesting
and recursion allowed.

EXIT Leaves the procedure (like in PASCAL).
FOR select_statement DO
compound_statement

Executes compound_statement for every line that is
returned by the SELECT statement.

IF (condition) THEN compound_statement
[ELSE compound_statement] IF statement, like in PASCAL.

POST_EVENT name Posts the specified event.

SUSPEND
Only for SELECT procedures which return tables: Waits for
the client to request the next line. Returns the next line to
the client.

WHILE (condition) DO
compound_statement WHILE statement. Like in PASCAL.

WHEN {EXCEPTION a | SQLCODE x | ANY}
DO compound_statement

Exception handling. WHEN statements must be at the end
of the procedure, directly before the final END.

EXECUTE STATEMENT stringvalue Executes the DML statement in stringvalue.
EXECUTE STATEMENT stringvalue INTO
variable_list Executes the statement and returns variables (singleton).

FOR EXECUTE STATEMENT stringvalue
INTO variable_list DO
compound_statement

Executes the statement and iterates through the resulting
lines.

(Source: Stored Procedures in Firebird by Stefan Heymann, 2004)

A complete Firebird 2.0 PSQL Language Reference including expressions, conditions and statements
can be found at: https://www.janus-software.com/fbmanual/index.php?book=psql.

The most important items are listed in detail below.

back to top of page

Using DML statements

The SQL Data Manipulation Language (DML), consists primarily of the SELECT, INSERT, UPDATE and
DELETE statements.

Statements that are not recognized or permitted in the stored procedures and trigger language
include DDL statements such as CREATE, ALTER, DROP, and SET as well as statements such as
GRANT, REVOKE, COMMIT, and ROLLBACK.

Wherever a literal value is specified in an INSERT, UPDATE or DELETE statement, an input or local
variable can be substituted in place of this literal. For example, variables can be used for the values to

https://www.janus-software.com/fbmanual/index.php?book=psql
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:dml
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:dml#select
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:dml#insert
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:dml#update
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:dml#delete
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:ddl
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:ddl#create
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:ddl#alter
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:ddl#drop
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:ddl#set
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:dcl#grant
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:dcl#revoke
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:data-transaction#commit
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:data-transaction#rollback

2023/08/09 00:30 3/9 Stored procedure and trigger language

IBExpert - http://ibexpert.com/docu/

be inserted into a new row, or the new values in an UPDATE statement. They can also be used in a
WHERE clause, to specify the rows that are to be updated or deleted.

Since Firebird 2.0, the SQL language extension EXECUTE BLOCK makes “dynamic PSQL” available to
SELECT specifications. It has the effect of allowing a self-contained block of PSQL code to be executed
in dynamic SQL as if it were a stored procedure. For further information please refer to EXECUTE
BLOCK statement.

Using SELECT statements

Firebird/InterBase® supports an extension to the standard SELECT statement, to solve the problem of
what to do with the results when using a SELECT statement inside a stored procedure. The INTO
clause appoints variables that receive the results of the SELECT statement. The syntax is as follows:

 SELECT <result1, result2, ..., resultN>
 FROM ...
 WHERE ...
GROUP BY ...
INTO : <Variable1, : Variable2, ..., VariableN>;

The INTO clause must be the final clause in the SELECT statement. A variable must be given for each
result generated by the statement. Important: this form of SELECT statement can generate only one
row. Therefore the ORDER BY clause is unnecessary here.

To use a SELECT that generates more than one row within a stored procedure, use the FOR SELECT
statement.

New to Firebird 2.0: support for derived tables in DSQL (subqueries in FROM clause) as defined by
SQL200X. A derived table is a set, derived from a dynamic SELECT statement. Derived tables can be
nested, if required, to build complex queries and they can be involved in joins as though they were
normal tables or views.

Syntax

SELECT
 <select list>
FROM
 <table reference list>

 <table reference list> ::= <table reference> [{<comma> <table
reference>}...]

 <table reference> ::=
 <table primary>
 | <joined table>

 <table primary> ::=
 <table> [[AS] <correlation name>]
 | <derived table>

http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:firebird2.0-language-reference:dml-statements:execute-block
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:firebird2.0-language-reference:dml-statements:select
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:stored-procedure
http://ibexpert.com/docu/doku.php?id=01-documentation:01-08-firebird-documentation:firebird-2.0.4-release-notes:data-manipulation-language
http://ibexpert.com/docu/doku.php?id=01-documentation:01-08-firebird-documentation:firebird-2.0.4-release-notes:data-manipulation-language
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:data-retrieval#select
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:stored-procedure
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:stored-procedure#local_variables_declare_variable_statement
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:data-retrieval#order_by
http://ibexpert.com/docu/doku.php?id=01-documentation:01-08-firebird-documentation:firebird-2.0.4-release-notes:data-manipulation-language#derived_tables
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:query#subquery
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:data-retrieval#from
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:join
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:view

Last
update:
2023/07/19
12:55

01-documentation:01-09-sql-language-references:language-reference:stored-procedure-and-trigger-language http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:stored-procedure-and-trigger-language

http://ibexpert.com/docu/ Printed on 2023/08/09 00:30

 <derived table> ::=
 <query expression> [[AS] <correlation name>]
 [<left paren> <derived column list> <right paren>]

 <derived column list> ::= <column name> [{<comma> <column name>}...]

Examples can be found in the Data Manipulation Language chapter.

Points to Note

Every column in the derived table must have a name. Unnamed expressions like constants
should be added with an alias or the column list should be used.
The number of columns in the column list should be the same as the number of columns from
the query expression.
The optimizer can handle a derived table very efficiently. However, if the derived table is
involved in an inner join and contains a subquery, then no join order can be made.

See also:

Data Retrieval
SQL basics

back to top of page

SET TERM terminator or terminating
character

Normally InterBase® processes a script step by step and separates two statements by a semicolon.
Each statement between two semicolons is parsed, interpreted, converted into an internal format and
executed. This is not possible in the case of stored procedures or triggers where there are often
multiple commands which need to be successively executed, i.e. there are several semicolons in their
source codes. So if CREATE PROCEDURE … was called, Firebird/InterBase® assumes that the
command has finished when it arrives at the first semi colon.

In order for Firebird/InterBase® to correctly interpret and transfer a stored procedure to the database,
it is necessary to temporarily alter the terminating character using the SET TERM statement. The
syntax for this is as follows (Although when using the IBExpert templates this is not necessary, as
IBExpert automatically inserts the SET TERM command):

SET TERM NEW_TERMINATOR OLD_TERMINATOR

Example

SET TERM ^;
CREATE PROCEDURE NAME
 AS
 BEGIN

http://ibexpert.com/docu/doku.php?id=01-documentation:01-08-firebird-documentation:firebird-2.0.4-release-notes:data-manipulation-language#derived_tables
http://ibexpert.com/docu/doku.php?id=01-documentation:01-13-miscellaneous:glossary:column
http://ibexpert.com/docu/doku.php?id=01-documentation:01-13-miscellaneous:glossary:expression
http://ibexpert.com/docu/doku.php?id=01-documentation:01-13-miscellaneous:glossary:alias
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:query
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:join#inner_join
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:query#subquery
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:data-retrieval
http://ibexpert.com/docu/doku.php?id=01-documentation:01-06-white-papers:firebird-development-using-ibexpert:sql-basics
http://ibexpert.com/docu/doku.php?id=01-documentation:01-13-miscellaneous:glossary:statement-definition
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:stored-procedure
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:trigger
http://ibexpert.com/docu/doku.php?id=01-documentation:01-13-miscellaneous:glossary:database

2023/08/09 00:30 5/9 Stored procedure and trigger language

IBExpert - http://ibexpert.com/docu/

 <procedure body>;
 END^
SET TERM ;^

Before the first SET TERM statement appears, Firebird/InterBase® regards the semicolon as the
statement terminating character and interprets and converts the script code up until each semicolon.

Following the first SET TERM statement, the terminator is switched and all following semicolons are no
longer interpreted as terminators. The CREATE PROCEDURE statement is then treated as one
statement up until the new terminating character, and parsed and interpreted. The final SET TERM
statement is necessary to change the terminating character back to a semicolon, using the syntax:

SET TERM OLD_TERMINATOR NEW_TERMINATOR

(refer to above example: SET TERM ;^).

The statement must be concluded by the previously defined temporary termination character. This
concluding statement is again interpreted as a statement between the two last termination
characters. Finally the semicolon becomes the termination character for use in further script
commands.

It is irrelevant which character is used to replace the semi colon; however it should be a seldom-used
sign to prevent conflicts e.g. ^, and not * or + (used in mathematical formulae) or ! (this is used for
“not equal”: A!=B).

back to top of page

SUSPEND

SUSPEND is used in stored procedures; It is used to return a row of data from a procedure to its caller.
It acts as if it was a data set, i.e. returns the named data set visually as a result.

It suspends procedure execution until the next FETCH is issued by the calling application and returns
output values, if there are any, to the calling application. It prevents the stored procedure from
terminating until the client has fetched all the results. This statement is not recommended for
executable procedures.

Syntax

<suspend_stmt> ::=
 SUSPEND ;

Suspends execution of a PSQL routine until the next value is requested by the calling application, and
returns output values, if any, to the calling application. If the procedure is called from a SELECT
statement, processing will continue following SUSPEND when the next row of data is needed. Use the
EXIT statement or let the code path end at the final END of the body to signal that there are no more
rows to return.

If the procedure is called from a EXECUTE PROCEDURE statement, then SUSPEND has the same effect

http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:stored-procedure
http://ibexpert.com/docu/doku.php?id=01-documentation:01-13-miscellaneous:glossary:data-set
http://ibexpert.com/docu/doku.php?id=01-documentation:01-13-miscellaneous:glossary:application
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:data-retrieval#select
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:data-retrieval#select

Last
update:
2023/07/19
12:55

01-documentation:01-09-sql-language-references:language-reference:stored-procedure-and-trigger-language http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:stored-procedure-and-trigger-language

http://ibexpert.com/docu/ Printed on 2023/08/09 00:30

as EXIT. This usage is legal, but not recommended.

BEGIN and END statement

As well as defining the contents of the stored procedure, these keywords also delimit a block of
statements which then executes as a single statement. This means that BEGIN and END can be used
to enclose several statements and so form a simple compound statement. Unlike all other PSQL
statements, a BEGIN … END block is not followed by a semicolon.

See also:

Firebird 2.0 Language Reference Update: BEGIN ... END blocks

back to top of page

DECLARE VARIABLE

Please refer to local variables.

FOR EXECUTE INTO

Use the FOR EXECUTE INTO statement to execute a (can also be dynamically created) SELECT
statement contained in a string and process all its result rows.

The execute SQL statement allows the execution of dynamically constructed SELECT statements. The
rows of the result set are sequentially assigned to the variables specified in the INTO clause, and for
each row the statement in the DO clause is executed.

To work with SELECT statements that return only a single row, consider using the EXECUTE INTO
statement.

It is not possible to use parameter markers (?) in the SELECT statement as there is no way to specify
the input actuals. Rather than using parameter markers, dynamically construct the SELECT
statement, using the input actuals as part of the construction process.

FOR SELECT ... DO ...

The FOR SELECT DO statement allows the compact processing of a SELECT statement. The rows of
the result set are sequentially assigned to the variables specified in the INTO clause, and for each row
the statement in the DO clause is executed.

http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:stored-procedure
http://ibexpert.com/docu/doku.php?id=01-documentation:01-13-miscellaneous:glossary:statement-definition
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:firebird2.0-language-reference:psql-statements:begin...blocks-may-be-empty
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:stored-procedure#local_variables_declare_variable_statement
http://ibexpert.com/docu/doku.php?id=01-documentation:01-13-miscellaneous:glossary:row
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:data-retrieval#select

2023/08/09 00:30 7/9 Stored procedure and trigger language

IBExpert - http://ibexpert.com/docu/

If the AS CURSOR clause is present, the select statement is assigned a cursor name. The current row
being processed by the FOR SELECT DO statement can be referred to in DELETE and UPDATE
statements in the body of the FOR SELECT DO by using the WHERE CURRENT OF clause of those
statements.

Examples can be found in Writing stored procedures and triggers.

back to top of page

IF THEN ELSE

A condition is evaluated and if it evaluates to TRUE the statement in the THEN clause is executed. If it
is not TRUE, i.e. It evaluates to FALSE or to NULL, and an ELSE clause is present, then the statement
in the ELSE clause is executed.

IF statements can be nested, i.e. The statements in the THEN or ELSE clauses can be IF statements
also. If the THEN clause contains a IF THEN ELSE statement, then that ELSE clause is deemed to be
part of the nested IF, just as in nearly all other programming languages. Enclose the nested IF in a
compound statement if you want the ELSE clause to refer to the enclosing IF statement.

variable = expression;

The variable can be an input or output parameter, or a local variable defined in a DECLARE VARIABLE
statement. The expression needs to be concluded with a semicolon. The syntax for the IF statement is
as follows:

IF <conditional_test>
THEN
<statements>;
ELSE
<statements>;

Any of the standard comparison operators available in SQL an be used (please refer to comparison
operators for a full list).

The value can be a constant or one of the input parameters, output parameters or local variables
used in the procedure.

If a single statement is placed after the THEN or ELSE clauses, it should be terminated with a
semicolon.

If multiple statements need to be placed after one of these clauses, use the BEGIN and END keywords
as follows:

IF <conditional_test> THEN
BEGIN
<statement1>;
<statement2>;
...

http://ibexpert.com/docu/doku.php?id=01-documentation:01-06-white-papers:firebird-development-using-ibexpert:writing-stored-procedures-and-triggers
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:stored-procedure#local_variables_declare_variable_statement
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:stored-procedure#stored_procedure_parameters_input_and_output_returns
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:stored-procedure#local_variables_declare_variable_statement
http://ibexpert.com/docu/doku.php?id=01-documentation:01-13-miscellaneous:glossary:expression
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:comparison-operators
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:comparison-operators
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:stored-procedure#stored_procedure_parameters_input_and_output_returns
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:stored-procedure#stored_procedure_parameters_input_and_output_returns
http://ibexpert.com/docu/doku.php?id=02-ibexpert:02-03-database-objects:stored-procedure#local_variables_declare_variable_statement

Last
update:
2023/07/19
12:55

01-documentation:01-09-sql-language-references:language-reference:stored-procedure-and-trigger-language http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:stored-procedure-and-trigger-language

http://ibexpert.com/docu/ Printed on 2023/08/09 00:30

<statementN>;
END
ELSE
etc.;

See also:

Firebird Null Guide: Conditional statements and loops

back to top of page

WHILE and DO

The WHILE … DO statement provides a looping capability. The syntax for this statement is as follows:

WHILE
<conditional_test>
DO
<statements>;

Firebird/InterBase® evaluates the conditional test. If it is TRUE, the statements following the WHILE
are executed. If it is FALSE, the statements are ignored. If only one statement is placed after the DO
clause, it should be terminated with a semicolon. If multiple statements are used after one of these
clauses, use the BEGIN and END keywords. Brackets need to be put around the conditional test.

OPEN CURSOR

New to Firebird 2.0, the OPEN statement allows you to open a local cursor.

Syntax

<open_stmt> ::=
 OPEN <cursor_name>;

<cursor_name> ::= <identifier>

where cursor_name is the name of a local cursor.

The OPEN statement opens a local cursor. Opening a cursor means that the associated query is
executed and the that the result set is kept available for subsequent processing by the FETCH
statement. The cursor must have been declared in the declarations section of the PSQL program.

Attempts to open a cursor that is already open, or attempts to open a named FOR SELECT cursor will
fail and generate a runtime exception. All cursors which were not explicitly closed will be closed
automatically on exit from the current PSQL program.

http://ibexpert.com/docu/doku.php?id=01-documentation:01-10-firebird-command-line-utilities:firebird-null-guide
http://ibexpert.com/docu/doku.php?id=01-documentation:01-13-miscellaneous:glossary:statement-definition
http://ibexpert.com/docu/doku.php?id=01-documentation:01-13-miscellaneous:glossary:exception

2023/08/09 00:30 9/9 Stored procedure and trigger language

IBExpert - http://ibexpert.com/docu/

Please also refer to Explicit cursors in the Firebird 2.0.4 Release Notes.

From:
http://ibexpert.com/docu/ - IBExpert

Permanent link:
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:stored-procedure-and-trigger-language

Last update: 2023/07/19 12:55

http://ibexpert.com/docu/doku.php?id=01-documentation:01-08-firebird-documentation:firebird-2.0.4-release-notes:stored-procedure-language#explicit_cursors
http://ibexpert.com/docu/doku.php?id=01-documentation:01-08-firebird-documentation:firebird-2.0.4-release-notes
http://ibexpert.com/docu/
http://ibexpert.com/docu/doku.php?id=01-documentation:01-09-sql-language-references:language-reference:stored-procedure-and-trigger-language

	Stored procedure and trigger language
	Summary of PSQL commands
	Using DML statements
	Using SELECT statements
	SET TERM terminator or terminating character
	SUSPEND
	BEGIN and END statement
	DECLARE VARIABLE
	FOR EXECUTE INTO
	FOR SELECT ... DO ...
	IF THEN ELSE
	WHILE and DO
	OPEN CURSOR

