## **FLOAT and DOUBLE PRECISION**

FLOAT data types are used to store values with significant decimals. The following FLOAT types are supported:

| Туре                    | Size    | Value range                                                  |
|-------------------------|---------|--------------------------------------------------------------|
| Float                   | 4 bytes | 7 significant decimals; -3.4 x $10^{-38}$ to 3.4 x $10^{38}$ |
| <b>Double Precision</b> | 8 bytes | 15 significant decimals; -1.7 x 10^-308 to 1.7 x 10^308      |

A column with the defined data type FLOAT can store a single-precision figure with up to 7 significant decimals. The decimal point can float between all seven of these digits. If a number with more than 7 decimal places needs to be saved, decimals beyond the seventh position are truncated. FLOAT columns require 4 bytes of storage.

A column with the defined data type DOUBLE PRECISION can store numbers with 15 significant decimals. This uses 8 bytes of storage. As with the FLOAT column, the decimal point can float within the column. The DOUBLE PRECISION data type is implemented in the majority of InterBase® platforms as a 64 bit number.

FLOAT types can be implemented for any calculative operations. They offer an optimal performance and sufficient range of values. It is possible to specify the display format of a FLOAT field under Environment Options / Grid / Display Formats.

The DOUBLE PRECISION data type can be written as follows:

## DOUBLE PRECISION DOUBLE

Result with dialect 1:

CREATE TABLE TEST(WERT NUMERIC(15,2)); INSERT INTO TEST(WERT) VALUES(100); SELECT \* FROM TEST; result 100 UPDATE TEST SET WERT=WERT/3; SELECT \* FROM TEST; result 33,33 UPDATE TEST SET WERT=WERT\*3; SELECT \* FROM TEST; result 100

Result with dialect 3:

CREATE TABLE TEST(WERT NUMERIC(15,2)); INSERT INTO TEST(WERT) VALUES(100); SELECT \* FROM TEST; result 100 UPDATE TEST SET WERT=WERT/3; SELECT \* FROM TEST; result 33,33 UPDATE TEST SET WERT=WERT\*3; SELECT \* FROM TEST; result 99,99

Since dialect 3 NUMERIC data is rounded according to commercial rounding rules; up to dialect 1 NUMERIC data is rounded according to technical rounding rules.

From: http://ibexpert.com/docu/ - IBExpert

Permanent link: http://ibexpert.com/docu/doku.php?id=01-documentation:01-13-miscellaneous:glossary:double-precision

Last update: 2023/08/16 10:28

